Knowledge-guided Deep Reinforcement Learning for Interactive Recommendation

被引:360
|
作者
Chen, Xiaocong [1 ]
Huang, Chaoran [1 ]
Yao, Lina [1 ]
Wang, Xianzhi [2 ]
Liu, Wei [1 ]
Zhang, Wenjie [1 ]
机构
[1] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW, Australia
[2] Univ Technol Sydney, Sch Comp Sci, Sydney, NSW, Australia
关键词
Recommender System; Reinforcement Learning; Deep Neural Network;
D O I
10.1109/ijcnn48605.2020.9207010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Interactive recommendation aims to learn from dynamic interactions between items and users to achieve responsiveness and accuracy. Reinforcement learning is inherently advantageous for coping with dynamic environments and thus has attracted increasing attention in interactive recommendation research. Inspired by knowledge-aware recommendation, we proposed Knowledge-Guided deep Reinforcement learning (KGRL) to harness the advantages of both reinforcement learning and knowledge graphs for interactive recommendation. This model is implemented upon the actor-critic network framework. It maintains a local knowledge network to guide decision-making and employs the attention mechanism to capture long-term semantics between items. We have conducted comprehensive experiments in a simulated online environment with six public real-world datasets and demonstrated the superiority of our model over several state-of-the-art methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Knowledge-Guided Multiview Deep Curriculum Learning for Elbow Fracture Classification
    Luo, Jun
    Kitamura, Gene
    Arefan, Dooman
    Doganay, Emine
    Panigrahy, Ashok
    Wu, Shandong
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2021, 2021, 12966 : 555 - 564
  • [22] Knowledge-Enhanced Causal Reinforcement Learning Model for Interactive Recommendation
    Nie, Weizhi
    Wen, Xin
    Liu, Jing
    Chen, Jiawei
    Wu, Jiancan
    Jin, Guoqing
    Lu, Jing
    Liu, An-An
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 1129 - 1142
  • [23] Gantry Work Cell Scheduling through Reinforcement Learning with Knowledge-guided Reward Setting
    Ou, Xinyan
    Chang, Qing
    Arinez, Jorge
    Zou, Jing
    IEEE ACCESS, 2018, 6 : 14699 - 14709
  • [24] Session-based Interactive Recommendation via Deep Reinforcement Learning
    Shi, Longxiang
    Zhang, Zilin
    Wang, Shoujin
    Zhang, Qi
    Wu, Minghui
    Yang, Cheng
    Li, Shijian
    Proceedings - IEEE International Conference on Data Mining, ICDM, 2023, : 1319 - 1324
  • [25] RLISR: A Deep Reinforcement Learning Based Interactive Service Recommendation Model
    Zhang, Mingwei
    Qu, Yingjie
    Li, Yage
    Wen, Xingyu
    Zhou, Yi
    IEEE ACCESS, 2024, 12 : 90204 - 90217
  • [26] A Text-Based Deep Reinforcement Learning Framework for Interactive Recommendation
    Wang, Chaoyang
    Guo, Zhiqiang
    Li, Jianjun
    Pan, Peng
    Li, Guohui
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 537 - 544
  • [27] Session-based Interactive Recommendation via Deep Reinforcement Learning
    Shi, Longxiang
    Zhang, Zilin
    Wang, Shoujin
    Zhang, Qi
    Wu, Minghui
    Yang, Cheng
    Li, Shijian
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 1319 - 1324
  • [28] DKFM: Dual Knowledge-Guided Fusion Model for Drug Recommendation
    Tian, Yankai
    Zhang, Yijia
    Li, Xingwang
    Lu, Mingyu
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT III, 2023, 13937 : 192 - 203
  • [29] Knowledge Graph-Enhanced Hierarchical Reinforcement Learning for Interactive and Explainable Recommendation
    Zhang, Mingwei
    Li, Yage
    Li, Shuping
    Wang, Yinchu
    Yan, Jing
    IEEE ACCESS, 2024, 12 : 137345 - 137359
  • [30] REDRL: A review-enhanced Deep Reinforcement Learning model for interactive recommendation
    Liu, Huiting
    Cai, Kun
    Li, Peipei
    Qian, Cheng
    Zhao, Peng
    Wu, Xindong
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213