In situ Reduction of Silver Nanoparticles on Chitosan Hybrid Copper Phosphate Nanoflowers for Highly Efficient Plasmonic Solar-driven Interfacial Water Evaporation

被引:15
|
作者
Zhang, Mei [1 ]
Xu, Wanghuai [1 ]
Li, Minfei [1 ]
Li, Jiaqian [1 ]
Wang, Peng [2 ]
Wang, Zuankai [1 ]
机构
[1] City Univ Hong Kong, Dept Mech Engn, Hong Kong 999077, Peoples R China
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong 999077, Peoples R China
关键词
bionic; plasmonic; water evaporation; synergistic effect; Ag NPs; hybrid flower; ONE SUN; MEMBRANE; DESALINATION; PERFORMANCE;
D O I
10.1007/s42235-021-0005-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The development of water purification device using solar energy has received tremendous attention. Despite extensive progress, traditional photothermal conversion usually has a high cost and high environmental impact. To overcome this problem, we develop a low cost, durable and environmentally friendly solar evaporator. This bi-layered evaporator is constructed with a thermal insulating polyvinylidene fluoride (PVDF) membrane as a bottom supporting layer and plasmonic silver nanoparticles decorated micro-sized hybrid flower (Ag/MF) as a top light-to-heat conversion layer. Compared with the sample with a flat silver film, the two-tier Ag/MF has a plasmonic enrichment property and high efficiency in converting the solar light to heat as each flower can generate a microscale hotspot by enriching the absorbed solar light. On the other hand, the PVDF membrane on the bottom with porous structure not only improves the mechanical stability of the entire structure, but also maintains a stable water supply from the bulk water to the evaporation interface by capillarity and minimizes the thermal conduction. The combination of excellent water evaporation ability, simple operation, and low cost of the production process imparts this type of plasmonic enhanced solar-driven interfacial water evaporator with promising prospects for potable water purification for point-of-use applications.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 50 条
  • [21] Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization
    Ding, Tianpeng
    Zhou, Yi
    Ong, Wei Li
    Ho, Ghim Wei
    Materials Today, 2021, 42 : 178 - 191
  • [22] Construction of a biomimetic wood structure with cellulose nanofiber/ molybdenum disulfide hybrid aerogel for highly-efficient solar-driven interfacial evaporation
    Jiang, Ya
    Liu, Mingjie
    Zhang, Xiaoyuan
    Su, Zhiqiang
    DESALINATION, 2023, 568
  • [23] Mass production of superhydrophilic sponges for efficient and stable solar-driven highly corrosive water evaporation
    Bai, Xianhua
    Li, Yaguang
    Zhang, Fengyu
    Xu, Yingqi
    Wang, Shufang
    Fu, Guangsheng
    ENVIRONMENTAL SCIENCE-WATER RESEARCH & TECHNOLOGY, 2019, 5 (11) : 2041 - 2047
  • [24] A fabric interpenetrating composite hydrospongels with permeability and evaporation enthalpy regulation for efficient solar-driven interfacial evaporation and water purification
    Xu, Bing
    Yao, Xingjie
    Zhang, Xinyu
    Chen, Feiyong
    Ma, Liang
    Fang, Shipeng
    Zhang, Xu
    Xu, Jingtao
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [25] Growth of CuS nanowire on copper mesh for efficient solar-driven water evaporation and wastewater purification
    Jeong, Sohee
    Kim, Younghun
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2024, 137 : 491 - 502
  • [26] Solar-Driven Interfacial Water Evaporation Using Open-Porous PDMS Embedded with Carbon Nanoparticles
    Wang, Shuzhe
    Almenabawy, Sara M.
    Kherani, Nazir P.
    Leung, Siu Ning
    O'Brien, Paul G.
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (04) : 3378 - 3386
  • [27] Highly efficient solar-driven water evaporation through a cotton fabric evaporator with wettability gradient
    Wu, Yong-Gang
    Xue, Chao-Hua
    Guo, Xiao-Jing
    Huang, Meng-Chen
    Wang, Hui-Di
    Ma, Chao-Qun
    Wang, Xing
    Shao, Zhong-Yang
    CHEMICAL ENGINEERING JOURNAL, 2023, 471
  • [28] Facile polypyrrole thin film coating on polypropylene membrane for efficient solar-driven interfacial water evaporation
    Huang, Xiayun
    Yu, Yi-Hsin
    de Llergo, Oscar L.
    Marquez, Samantha M.
    Cheng, Zhengdong
    RSC ADVANCES, 2017, 7 (16): : 9495 - 9499
  • [29] Carbonized wood supported Fe3O4 nanoparticles for efficient solar-driven interfacial evaporation
    Wu, Zebo
    Liu, Dan
    Wang, Wenhao
    Xie, Hongtong
    Chen, Xianghui
    Yin, Huibin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 276
  • [30] MXene/aramid nanofiber films enables highly efficient photothermal conversion for solar-driven water evaporation
    Zang, X.
    Qin, Y.
    Gu, M.
    Sun, Y.
    Huang, D.
    Ji, J.
    Xue, M.
    MATERIALS TODAY SUSTAINABILITY, 2023, 24