Approximating satisfiable satisfiability problems

被引:11
|
作者
Trevisan, L [1 ]
机构
[1] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
关键词
approximation algorithms; maximum satisfiability; constraint satisfaction;
D O I
10.1007/s004530010035
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the approximability of the Maximum Satisfiability Problem (MAX SAT) and of the boolean k-ary Constraint Satisfaction Problem (MAX kCSP) restricted to satisfiable instances. For both problems we improve on the performance ratios of known algorithms for the unrestricted case. Our approximation for satisfiable MAX 3CSP instances is better than any possible approximation for the unrestricted version of the problem (unless P = NP). This result implies that the requirement of perfect completeness weakens the acceptance power of non-adaptive PCP verifiers that read 3 bits. We also present the first non-trivial results about PCP classes defined in terms of free bits that collapse to P.
引用
收藏
页码:145 / 172
页数:28
相关论文
共 50 条
  • [31] Branch Location Problems with Maximum Satisfiability
    Zaikin, Oleg
    Ignatiev, Alexey
    Marques-Silva, Joao
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 379 - 386
  • [32] Robust Satisfiability of Constraint Satisfaction Problems
    Barto, Libor
    Kozik, Marcin
    STOC'12: PROCEEDINGS OF THE 2012 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2012, : 931 - 940
  • [33] CNF Satisfiability in a Subspace and Related Problems
    Arvind, V
    Guruswami, Venkatesan
    ALGORITHMICA, 2022, 84 (11) : 3276 - 3299
  • [34] Optimal testing for planted satisfiability problems
    Berthet, Quentin
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 298 - 317
  • [35] Complexity of Generalized Satisfiability Counting Problems
    Dept. de Mathématiques, Université de Caen, 14032 Caen, France
    不详
    Inf Comput, 1 (1-12):
  • [36] CNF Satisfiability in a Subspace and Related Problems
    V. Arvind
    Venkatesan Guruswami
    Algorithmica, 2022, 84 : 3276 - 3299
  • [37] Relaxation in graph coloring and satisfiability problems
    Svenson, P
    Nordahl, MG
    PHYSICAL REVIEW E, 1999, 59 (04) : 3983 - 3999
  • [38] The Satisfiability and Validity Problems for Probabilistic CTL
    Kucera, Antonin
    REACHABILITY PROBLEMS, RP 2024, 2024, 15050 : 9 - 18
  • [39] On some weighted satisfiability and graph problems
    Porschen, S. (porschen@informatik.uni-koeln.de), (Springer Verlag):
  • [40] Solving Satisfiability Problems with Membrane Algorithms
    Zhang, Gexiang
    Liu, Chunxiu
    Gheorghe, Marian
    Ipate, Florentin
    2009 FOURTH INTERNATIONAL CONFERENCE ON BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, PROCEEDINGS, 2009, : 29 - +