Gait Parameter Estimation of Elderly People using 3D Human Pose Estimation in Early Detection of Dementia

被引:1
|
作者
Kondragunta, Jyothsna [1 ]
Hirtz, Gangolf [1 ]
机构
[1] Tech Univ Chemnitz, Chair Digital Signal Proc & Circuit Technol DST, Fac Elect Engn & Informat Technol, D-09126 Chemnitz, Germany
关键词
VARIABILITY; DISEASE; ADULTS;
D O I
10.1109/embc44109.2020.9175766
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Early detection of dementia is becoming increasingly important as it plays a crucial role in handling the patients and offering better treatment. Many of the recent studies concluded a tight relationship between dementia and gait disorders. For this purpose, identification of gait abnormalities is key factor. Novel technologies provide many options such as wearable and non-wearable approaches for analysis of gait. As the occurrence of dementia is more prominent in elderly people, wearable technology is considered out of scope for this work. The gait data of several elderly people over 80 years is acquired over certain intervals during the scope of the project. The elderly people are classified into three study groups namely cognitively healthy individuals (CHI), subjectively cognitively impaired persons (SCI) and possible mildly cognitively impaired persons due to inconclusive test results (pMCI) based on their cognitive status. The gait data is acquired using Kinect sensor. The acquired data consists of both RGB image sequences and depth data of the test persons. 3D human pose estimation is performed on this gait data and gait analysis is done. The transformations in the gait cycles are observed and the health condition of the individual is analyzed. From the analysis, the patterns in the gait abnormalities are correlated with the above- mentioned classification and are used in the detection of dementia in advance. The obtained results look promising and further analysis of gait parameters is under progress.
引用
收藏
页码:5798 / 5801
页数:4
相关论文
共 50 条
  • [21] Occlusion Resilient 3D Human Pose Estimation
    Roy, Soumava Kumar
    Badanin, Ilia
    Honari, Sina
    Fua, Pascal
    2024 INTERNATIONAL CONFERENCE IN 3D VISION, 3DV 2024, 2024, : 1198 - 1207
  • [22] A survey on monocular 3D human pose estimation
    Ji X.
    Fang Q.
    Dong J.
    Shuai Q.
    Jiang W.
    Zhou X.
    Virtual Reality and Intelligent Hardware, 2020, 2 (06): : 471 - 500
  • [23] Precise 3D Pose Estimation of Human Faces
    Pernek, Akos
    Hajder, Levente
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 3, 2014, : 618 - 625
  • [24] A survey on deep 3D human pose estimation
    Neupane, Rama Bastola
    Li, Kan
    Boka, Tesfaye Fenta
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 58 (01)
  • [25] Deep 3D human pose estimation: A review
    Wang, Jinbao
    Tan, Shujie
    Zhen, Xiantong
    Xu, Shuo
    Zheng, Feng
    He, Zhenyu
    Shao, Ling
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 210
  • [26] 3D Human Pose Estimation With Adversarial Learning
    Meng, Wenming
    Hu, Tao
    Shuai, Li
    2019 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY AND VISUALIZATION (ICVRV), 2019, : 93 - 99
  • [27] View Invariant 3D Human Pose Estimation
    Wei, Guoqiang
    Lan, Cuiling
    Zeng, Wenjun
    Chen, Zhibo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (12) : 4601 - 4610
  • [28] 3D human pose estimation by depth map
    Wu, Jianzhai
    Hu, Dewen
    Xiang, Fengtao
    Yuan, Xingsheng
    Su, Jiongming
    VISUAL COMPUTER, 2020, 36 (07): : 1401 - 1410
  • [29] MONOCULAR 3D HUMAN POSE ESTIMATION BY CLASSIFICATION
    Greif, Thomas
    Lienhart, Rainer
    Sengupta, Debabrata
    2011 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2011,
  • [30] 3D human pose estimation by depth map
    Jianzhai Wu
    Dewen Hu
    Fengtao Xiang
    Xingsheng Yuan
    Jiongming Su
    The Visual Computer, 2020, 36 : 1401 - 1410