Performance bounds for modeling NUMA architectures

被引:0
|
作者
Geist, R
机构
关键词
Erlang distribution; NUMA architectures; performance evaluation; queuing networks; throughput monotonicity;
D O I
10.1016/S0020-0190(97)00106-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Scalable, multi-processor, computing systems in which memories are logically shared but physically distributed exhibit non-uniform memory access (NUMA) times. Modeling such systems presents special difficulties. Closed queuing networks, in which some servers provide exponentially distributed service and others provide deterministic (constant) service, offer the desired level of model representation, but such mixed networks remain analytically intractable. This paper shows that the throughput of any such mixed network is necessarily bounded below by the throughput of a purely exponential-server network and bounded above by the throughput of a purely deterministic-server network. In particular, replacing any deterministic server by an exponential server of the same mean will not increase throughput. Since fast techniques exist for solving purely exponential and purely deterministic networks, performance bounds are at hand. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:113 / 117
页数:5
相关论文
共 50 条
  • [21] An Adaptive Concurrent Priority Queue for NUMA Architectures
    Strati, Foteini
    Giannoula, Christina
    Siakavaras, Dimitrios
    Goumas, Georgios
    Koziris, Nectarios
    CF '19 - PROCEEDINGS OF THE 16TH ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS, 2019, : 135 - 144
  • [22] ForestGOMP: An Efficient OpenMP Environment for NUMA Architectures
    François Broquedis
    Nathalie Furmento
    Brice Goglin
    Pierre-André Wacrenier
    Raymond Namyst
    International Journal of Parallel Programming, 2010, 38 : 418 - 439
  • [23] Balancing Shared and Distributed Heaps on NUMA Architectures
    Aljabri, Malak
    Loidl, Hans-Wolfgang
    Trinder, Phil
    TRENDS IN FUNCTIONAL PROGRAMMING, TFP 2014, 2015, 8843 : 1 - 17
  • [24] Nap: Persistent Memory Indexes for NUMA Architectures
    Wang, Qing
    Lu, Youyou
    Li, Junru
    Xie, Minhui
    Shu, Jiwu
    ACM TRANSACTIONS ON STORAGE, 2022, 18 (01)
  • [25] PERFORMANCE MODELING OF DISTRIBUTED MEMORY ARCHITECTURES
    JOHNSSON, SL
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1991, 12 (04) : 300 - 312
  • [26] Performance modeling of emerging HPC architectures
    Bhatia, Nikhil
    Alam, Sadaf R.
    Vetter, Jeffrey S.
    PROCEEDINGS OF THE HPCMP USERS GROUP CONFERENCE 2006, 2006, : 367 - 373
  • [27] Modeling and performance analysis of GALS architectures
    Dasgupta, Sohini
    Yakovlev, Alex
    2006 INTERNATIONAL SYMPOSIUM ON SYSTEM-ON-CHIP PROCEEDINGS, 2006, : 187 - +
  • [28] FlashStorageSim: Performance Modeling for SSD Architectures
    Malladi, Krishna T.
    Chang, Mu-Tien
    Niu, Dimin
    Zheng, Hongzhong
    2017 INTERNATIONAL CONFERENCE ON NETWORKING, ARCHITECTURE, AND STORAGE (NAS), 2017, : 284 - 285
  • [29] Performance Modeling for Service Oriented Architectures
    Brebner, Paul
    O'Brien, Liam
    Gray, Jon
    ICSE'08 PROCEEDINGS OF THE THIRTIETH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 2008, : 953 - 954
  • [30] Achieving High Performance With TCP Over 40 GbE on NUMA Architectures for CMS Data Acquisition
    Bawej, Tomasz
    Behrens, Ulf
    Branson, James
    Chaze, Olivier
    Cittolin, Sergio
    Darlea, Georgiana-Lavinia
    Deldicque, Christian
    Dobson, Marc
    Dupont, Aymeric
    Erhan, Samim
    Forrest, Andrew
    Gigi, Dominique
    Glege, Frank
    Gomez-Ceballos, Guillelmo
    Gomez-Reino, Robert
    Hegeman, Jeroen
    Holzner, Andre
    Masetti, Lorenzo
    Meijers, Frans
    Meschi, Emilio
    Mommsen, Remigius K.
    Morovic, Srecko
    Nunez-Barranco-Fernandez, Carlos
    O'Dell, Vivian
    Orsini, Luciano
    Paus, Christoph
    Petrucci, Andrea
    Pieri, Marco
    Racz, Attila
    Sakulin, Hannes
    Schwick, Christoph
    Stieger, Benjamin
    Sumorok, Konstanty
    Veverka, Jan
    Wakefield, Christopher C.
    Zejdl, Petr
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2015, 62 (03) : 1091 - 1098