Classification of Gaussian spatio-temporal data with stationary separable covariances

被引:1
|
作者
Karaliute, Marta [1 ]
Ducinskas, Kestutis [1 ,2 ]
机构
[1] Vilnius Univ, Inst Data Sci & Digital Technol, Akad Str 4, LT-08412 Vilnius, Lithuania
[2] Klaipeda Univ, Fac Marine Technol & Nat Sci, Herkaus Manto Str 84, LT-92294 Klaipeda, Lithuania
来源
关键词
separable covariance function; Bayes discriminant function; powered-exponential family; LINEAR DISCRIMINANT-ANALYSIS; MODELS; PREDICTION; SPACE;
D O I
10.15388/namc.2021.26.22359
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The novel approach to classification of spatio-temporal data based on Bayes discriminant functions is developed. We focus on the problem of supervised classifying of the spatiotemporal Gaussian random field (GRF) observation into one of two classes specified by different drift parameters, separable nonlinear covariance functions and nonstationary label field. The performance of proposed classification rule is validated by the values of local Bayes and empirical error rates realized by leave one out procedure. A simulation study for spatial covariance functions belonging to powered-exponential family and temporal covariance functions of AR(1) models is carried out. The influence of the values of spatial and temporal covariance parameters to error rates for several label field models are studied. The results showed that the proposed classification methodology can be applied successfully in practice with small error rates and can be a useful tool for discriminant analysis of spatio-temporal data.
引用
收藏
页码:363 / 374
页数:12
相关论文
共 50 条
  • [21] Spatio-temporal trajectory data modeling for fishing gear classification
    Rodriguez-Albala, Juan Manuel
    Pena, Alejandro
    Melzi, Pietro
    Morales, Aythami
    Tolosana, Ruben
    Fierrez, Julian
    Vera-Rodriguez, Ruben
    Ortega-Garcia, Javier
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (02)
  • [22] Separable spatio-temporal kriging for fast virtual sensing
    Miniato, Michele Lambardi di San
    Bellio, Ruggero
    Grassetti, Luca
    Vidoni, Paolo
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2022, 38 (05) : 806 - 829
  • [23] A New Covariance Function and Spatio-Temporal Prediction (Kriging) for A Stationary Spatio-Temporal Random Process
    Rao, T. Subba
    Terdik, Gyorgy
    JOURNAL OF TIME SERIES ANALYSIS, 2017, 38 (06) : 936 - 959
  • [24] Families of spatio-temporal stationary covariance models
    Ma, C
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 116 (02) : 489 - 501
  • [25] Flexible spatio-temporal stationary variogram models
    Rubén Fernández-Casal
    Wenceslao González-Manteiga
    Manuel Febrero-Bande
    Statistics and Computing, 2003, 13 : 127 - 136
  • [26] Flexible spatio-temporal stationary variogram models
    Fernández-Casal, R
    González-Manteiga, W
    Febrero-Bande, M
    STATISTICS AND COMPUTING, 2003, 13 (02) : 127 - 136
  • [27] Spatially Weighted Bayesian Classification of Spatio-Temporal Areal Data Based on Gaussian-Hidden Markov Models
    Ducinskas, Kestutis
    Karaliute, Marta
    Saltyte-Vaisiauske, Laura
    MATHEMATICS, 2023, 11 (02)
  • [28] Non-separable spatio-temporal models via transformed multivariate Gaussian Markov random fields
    Prates, Marcos O.
    Azevedo, Douglas R. M.
    MacNab, Ying C.
    Willig, Michael R.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2022, 71 (05) : 1116 - 1136
  • [29] Mining spatio-temporal data
    Gennady Andrienko
    Donato Malerba
    Michael May
    Maguelonne Teisseire
    Journal of Intelligent Information Systems, 2006, 27 : 187 - 190
  • [30] Statistics for Spatio-Temporal Data
    Mills, Jeff
    JOURNAL OF REGIONAL SCIENCE, 2012, 52 (03) : 512 - 513