Optimal shrinkage estimations in partially linear single-index models for binary longitudinal data

被引:2
|
作者
Hossain, Shakhawat [1 ]
Lac, Le An [1 ]
机构
[1] Univ Winnipeg, Dept Math & Stat, Winnipeg, MB R3B 2E9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Asymptotic distributional bias and risk; Generalized estimating equations; Monte Carlo simulation; Partially linear single-index models; Pretest and shrinkage estimators;
D O I
10.1007/s11749-021-00753-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper focuses on the optimal estimation strategies of partially linear single-index models (PLSIM) for binary longitudinal data. Fitting model between the response and covariates may cause complexity and the linear terms may not be adequate to represent the relationship. In this situation, the PLSIM containing both linear and nonlinear terms is preferable. The objective of this paper is to develop optimal estimation strategies such as, pretest and shrinkage methods, for the analysis of binary longitudinal data under the PLSIM where some regression parameters are subject to restrictions. We estimate the nonparametric component using kernel estimating equations, and then use profile estimating equations to estimate the unrestricted and restricted estimators. To apply the pretest and shrinkage methods, we fit two models: one includes all covariates and the other restricts the regression parameters based on the auxiliary information. The unrestricted and restricted estimators are then combined optimally to get the pretest and shrinkage estimators. We also derive the asymptotic properties of the estimators in terms of biases and risks. Monte Carlo simulations are also conducted to examine the relative performance of the proposed estimators to the unrestricted estimator. An empirical application is also be used to illustrate the usefulness of our methodology.
引用
收藏
页码:811 / 835
页数:25
相关论文
共 50 条
  • [11] Efficient estimation for marginal generalized partially linear single-index models with longitudinal data
    Xu, Peirong
    Zhang, Jun
    Huang, Xingfang
    Wang, Tao
    TEST, 2016, 25 (03) : 413 - 431
  • [12] Efficient estimation for marginal generalized partially linear single-index models with longitudinal data
    Peirong Xu
    Jun Zhang
    Xingfang Huang
    Tao Wang
    TEST, 2016, 25 : 413 - 431
  • [13] ESTIMATION FOR SINGLE-INDEX AND PARTIALLY LINEAR SINGLE-INDEX INTEGRATED MODELS
    Dong, Chaohua
    Gao, Jiti
    Tjostheim, Dag
    ANNALS OF STATISTICS, 2016, 44 (01): : 425 - 453
  • [14] Oracally efficient estimation and simultaneous inference in partially linear single-index models for longitudinal data
    Cai, Li
    Jin, Lei
    Wang, Suojin
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 2395 - 2438
  • [15] Generalized partially linear single-index models
    Carroll, RJ
    Fan, JQ
    Gijbels, I
    Wand, MP
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) : 477 - 489
  • [16] On extended partially linear single-index models
    Xia, YC
    Tong, H
    Li, WK
    BIOMETRIKA, 1999, 86 (04) : 831 - 842
  • [17] Separation of linear and index covariates in partially linear single-index models
    Lian, Heng
    Liang, Hua
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 143 : 56 - 70
  • [18] ASYMPTOTIC PROPERTIES OF ESTIMATORS IN PARTIALLY LINEAR SINGLE-INDEX MODEL FOR LONGITUDINAL DATA
    Tian Ping
    Yang Lin
    Xue Liugen
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (03) : 677 - 687
  • [19] Bayesian quantile regression for partially linear single-index model with longitudinal data
    Liu, Changsheng
    Liang, Hanying
    Li, Yongmei
    STATISTICAL PAPERS, 2025, 66 (01)
  • [20] ASYMPTOTIC PROPERTIES OF ESTIMATORS IN PARTIALLY LINEAR SINGLE-INDEX MODEL FOR LONGITUDINAL DATA
    田萍
    杨林
    薛留根
    ActaMathematicaScientia, 2010, 30 (03) : 677 - 687