Riemannian Stein Variational Gradient Descent for Bayesian Inference

被引:0
|
作者
Liu, Chang [1 ]
Zhu, Jun [1 ]
机构
[1] Tsinghua Univ, Ctr Bioinspired Comp Res, Dept Comp Sci & Tech, TNList Lab,State Key Lab Intell Tech & Syst, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop Riemannian Stein Variational Gradient Descent (RSVGD), a Bayesian inference method that generalizes Stein Variational Gradient Descent (SVGD) to Riemann manifold. The benefits are two-folds: (i) for inference tasks in Euclidean spaces, RSVGD has the advantage over SVGD of utilizing information geometry, and (ii) for inference tasks on Riemann manifolds, RSVGD brings the unique advantages of SVGD to the Riemannian world. To appropriately transfer to Riemann manifolds, we conceive novel and non-trivial techniques for RSVGD, which are required by the intrinsically different characteristics of general Riemann manifolds from Euclidean spaces. We also discover Riemannian Stein's Identity and Riemannian Kernelized Stein Discrepancy. Experimental results show the advantages over SVGD of exploring distribution geometry and the advantages of particleefficiency, iteration-effectiveness and approximation flexibility over other inference methods on Riemann manifolds.
引用
收藏
页码:3627 / 3634
页数:8
相关论文
共 50 条
  • [41] p-Kernel Stein Variational Gradient Descent for Data Assimilation and History Matching
    Stordal, Andreas S.
    Moraes, Rafael J.
    Raanes, Patrick N.
    Evensen, Geir
    MATHEMATICAL GEOSCIENCES, 2021, 53 (03) : 375 - 393
  • [42] Stabilizing Training of Generative Adversarial Nets via Langevin Stein Variational Gradient Descent
    Wang, Dong
    Qin, Xiaoqian
    Song, Fengyi
    Cheng, Li
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (07) : 2768 - 2780
  • [43] Projected Wasserstein Gradient Descent for High-Dimensional Bayesian Inference
    Wang, Yifei
    Chen, Peng
    Li, Wuchen
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (04): : 1513 - 1532
  • [44] Stein Variational Policy Gradient
    Liu, Yang
    Ramachandran, Prajit
    Liu, Qiang
    Peng, Jian
    CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI2017), 2017,
  • [45] Stein Variational Inference for Discrete Distributions
    Han, Jun
    Ding, Fan
    Liu, Xianglong
    Torresani, Lorenzo
    Peng, Jian
    Liu, Qiang
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 4563 - 4571
  • [46] Projected Stein Variational Newton: A Fast and Scalable Bayesian Inference Method in High Dimensions
    Chen, Peng
    Wu, Keyi
    Chen, Joshua
    O'Leary-Roseberry, Thomas
    Ghattas, Omar
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [47] Stochastic Gradient Descent on Riemannian Manifolds
    Bonnabel, Silvere
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (09) : 2217 - 2229
  • [48] STEIN VARIATIONAL GRADIENT DESCENT ON INFINITE-DIMENSIONAL SPACE AND APPLICATIONS TO STATISTICAL INVERSE PROBLEMS
    Jia, Junxiong
    LI, Peijun
    Meng, Deyu
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (04) : 2225 - 2252
  • [49] Annealed stein variational gradient descent for improved uncertainty estimation in full-waveform inversion
    Corrales, Miguel
    Berti, Sean
    Denel, Bertrand
    Williamson, Paul
    Aleardi, Mattia
    Ravasi, Matteo
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2025, 241 (02) : 1088 - 1113
  • [50] Regularized Stein Variational Gradient Flow
    He, Ye
    Balasubramanian, Krishnakumar
    Sriperumbudur, Bharath K.
    Lu, Jianfeng
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024,