Galerkin spectral method for the fractional nonlocal thermistor problem

被引:5
|
作者
Sidi Ammi, Moulay Rchid [1 ]
Torres, Delfim F. M. [2 ]
机构
[1] Moulay Ismail Univ, Fac Sci & Tech, Dept Math, AMNEA Grp, BP 509, Errachidia, Morocco
[2] Univ Aveiro, Ctr Res & Dev Math & Applicat CIDMA, Dept Math, P-3810193 Aveiro, Portugal
关键词
Fractional differential equations; Finite difference method; Galerkin spectral method; Stability; Error analysis; DIFFUSION;
D O I
10.1016/j.camwa.2016.05.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop and analyse a numerical method for the time-fractional nonlocal thermistor problem. By rigorous proofs, some error estimates in different contexts are derived, showing that the combination of the backward differentiation in time and the Galerkin spectral method in space leads, for an enough smooth solution, to an approximation of exponential convergence in space. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1077 / 1086
页数:10
相关论文
共 50 条
  • [41] A Petrov-Galerkin spectral method for the linearized time fractional KdV equation
    Chen, Hu
    Sun, Tao
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (6-7) : 1292 - 1307
  • [42] Spectral Galerkin method and its application to a Cauchy problem of Helmholtz equation
    Xiong, Xiangtuan
    Zhao, Xiaochen
    Wang, Junxia
    NUMERICAL ALGORITHMS, 2013, 63 (04) : 691 - 711
  • [43] Spectral Galerkin method and its application to a Cauchy problem of Helmholtz equation
    Xiangtuan Xiong
    Xiaochen Zhao
    Junxia Wang
    Numerical Algorithms, 2013, 63 : 691 - 711
  • [44] Jacobi Spectral Galerkin Method for Distributed-Order Fractional Rayleigh-Stokes Problem for a Generalized Second Grade Fluid
    Hafez, Ramy M.
    Zaky, Mahmoud A.
    Abdelkawy, Mohamed A.
    FRONTIERS IN PHYSICS, 2020, 7
  • [45] A TYPE OF NONLOCAL ELLIPTIC PROBLEM: EXISTENCE AND APPROXIMATION THROUGH A GALERKIN-FOURIER METHOD
    Andres, Fuensanta
    Munoz, Julio
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (01) : 498 - 525
  • [46] On spectral Petrov-Galerkin method for solving optimal control problem governed by a two-sided fractional diffusion equation
    Li, Shengyue
    Cao, Wanrong
    Wang, Yibo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 107 : 104 - 116
  • [47] Multiplicity results for a nonlocal fractional problem
    Naghizadeh, Z.
    Nikan, O.
    Lopes, A.M.
    Computational and Applied Mathematics, 2022, 41 (06)
  • [48] On the nonlocal bending problem with fractional hereditariness
    Barretta, Raffaele
    Marotti de Sciarra, Francesco
    Pinnola, Francesco P.
    Vaccaro, Marzia S.
    MECCANICA, 2022, 57 (04) : 807 - 820
  • [49] Multiplicity results for a nonlocal fractional problem
    Naghizadeh, Z.
    Nikan, O.
    Lopes, A. M.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [50] On the nonlocal bending problem with fractional hereditariness
    Raffaele Barretta
    Francesco Marotti de Sciarra
    Francesco P. Pinnola
    Marzia S. Vaccaro
    Meccanica, 2022, 57 : 807 - 820