Parametric modelling algorithms in electrical capacitance tomography for multiphase flow monitoring

被引:0
|
作者
Grudzien, K. [1 ]
Romanowski, A. [1 ]
Aykroyd, R. G. [2 ]
Williams, R. A. [3 ]
Mosorov, V. [1 ]
机构
[1] Tech Univ Lodz, Dept Comp Engn, PL-90924 Lodz, Poland
[2] Univ Leeds, Dept Stat, Leeds, W Yorkshire, England
[3] Univ Leeds, Sch Proc Environm & Mat Engn, Leeds, W Yorkshire, England
关键词
advanced statistical algorithms; inverse problem; electrical capacitance tomography; granular flow;
D O I
10.1109/MEMSTECH.2006.288675
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Bayesian statistics is a powerful physical phenomena modelling tool. However it usually demands highly iterative algorithms, hence it is was not widely used so far. Recently, rapid development of computing capabilities enables use of such methods. Computing methodology here presented features Markov chain Monte Carlo (MCMC) methods applied to Bayesian modelling. The essential aspect is enabling direct characteristic parameters estimation, hence omitting the phase of image reconstruction widely produced whenever process tomography is applied. This property has an important feature of making feasible implementation of automatic industrial process control systems based on Electrical Capacitance Tomography (ECT).
引用
收藏
页码:100 / +
页数:2
相关论文
共 50 条
  • [21] A review on image reconstruction algorithms for electrical capacitance/resistance tomography
    Cui, Ziqiang
    Wang, Qi
    Xue, Qian
    Fan, Wenru
    Zhang, Lingling
    Cao, Zhang
    Sun, Benyuan
    Wang, Huaxiang
    Yang, Wuqiang
    SENSOR REVIEW, 2016, 36 (04) : 429 - 445
  • [22] Electrical Capacitance Tomography: Current Sensors/Algorithms and future Advances
    Neumayer, M.
    Steiner, G.
    Watzenig, D.
    2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 929 - 934
  • [23] A virtual platform of electrical tomography for multiphase flow imaging
    Wang, Sheng-Nan
    Giorgio-Serchi, Francesco
    Yang, Yun-Jie
    PHYSICS OF FLUIDS, 2022, 34 (10)
  • [24] Multimodal imaging of multiphase flows with electromagnetic flow tomography and electrical tomography
    Vauhkonen, M.
    Hanninen, A.
    Jauhiainen, J.
    Lehtikangas, O.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2019, 30 (09)
  • [25] Parametric Reconstruction of Permittivity Graded Materials Based on Electrical Capacitance Tomography
    Wang, C.
    Li, X. R.
    Li, W. D.
    Zhang, L. Y.
    Zhang, G. J.
    2019 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL MATERIALS AND POWER EQUIPMENT (ICEMPE 2019), 2019, : 143 - 146
  • [26] An Image Reconstruction for Electrical Capacitance Tomography using Parametric Level Set
    Li, Rui
    Zhang, Yongfu
    Peng, Lihui
    Liao, Xinghe
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS (ICCCS 2020), 2020, : 384 - 390
  • [27] Improvement of Flow Velocity Measurement Algorithms Based on Correlation Function and Twin Plane Electrical Capacitance Tomography
    Mosorov, Volodymyr
    Zych, Marcin
    Hanus, Robert
    Sankowski, Dominik
    Saoud, Ayoub
    SENSORS, 2020, 20 (01)
  • [28] Monitoring of multiphase pharmaceutical processes using electrical resistance tomography
    Ricard, F
    Brechtelsbauer, C
    Xu, XY
    Lawrence, CJ
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2005, 83 (A7): : 794 - 805
  • [29] Single-Plane Dual-Modality Tomography for Multiphase Flow Imaging by Integrating Electrical Capacitance and Ultrasonic Sensors
    Pusppanathan, Jaysuman
    Rahim, Ruzairi Abdul
    Phang, Fatin Aliah
    Mohamad, Elmy Johana
    Ayob, Nor Muzakkir Nor
    Rahiman, Mohd Hafiz Fazalul
    Seong, Chan Kok
    IEEE SENSORS JOURNAL, 2017, 17 (19) : 6368 - 6377
  • [30] Nondestructive dynamic process monitoring using electrical capacitance tomography
    Ijaz, U. Z.
    Kim, J. H.
    Kim, M. C.
    Kim, S.
    Park, J. W.
    Kim, K. Y.
    ADVANCED NONDESTRUCTIVE EVALUATION I, PTS 1 AND 2, PROCEEDINGS, 2006, 321-323 : 1671 - 1674