Parametric modelling algorithms in electrical capacitance tomography for multiphase flow monitoring

被引:0
|
作者
Grudzien, K. [1 ]
Romanowski, A. [1 ]
Aykroyd, R. G. [2 ]
Williams, R. A. [3 ]
Mosorov, V. [1 ]
机构
[1] Tech Univ Lodz, Dept Comp Engn, PL-90924 Lodz, Poland
[2] Univ Leeds, Dept Stat, Leeds, W Yorkshire, England
[3] Univ Leeds, Sch Proc Environm & Mat Engn, Leeds, W Yorkshire, England
关键词
advanced statistical algorithms; inverse problem; electrical capacitance tomography; granular flow;
D O I
10.1109/MEMSTECH.2006.288675
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Bayesian statistics is a powerful physical phenomena modelling tool. However it usually demands highly iterative algorithms, hence it is was not widely used so far. Recently, rapid development of computing capabilities enables use of such methods. Computing methodology here presented features Markov chain Monte Carlo (MCMC) methods applied to Bayesian modelling. The essential aspect is enabling direct characteristic parameters estimation, hence omitting the phase of image reconstruction widely produced whenever process tomography is applied. This property has an important feature of making feasible implementation of automatic industrial process control systems based on Electrical Capacitance Tomography (ECT).
引用
收藏
页码:100 / +
页数:2
相关论文
共 50 条
  • [1] Review of Selected Advances in Electrical Capacitance Volume Tomography for Multiphase Flow Monitoring
    Rasel, Rafiul K.
    Chowdhury, Shah M.
    Marashdeh, Qussai M.
    Teixeira, Fernando L.
    ENERGIES, 2022, 15 (14)
  • [2] Dual-Modality 4-Terminal Electrical Capacitance and Resistance Tomography for Multiphase Flow Monitoring
    Rodriguez-Frias, Marco Antonio
    Yang, Wuqiang
    IEEE SENSORS JOURNAL, 2020, 20 (06) : 3217 - 3225
  • [3] Toward Multiphase Flow Decomposition Based on Electrical Capacitance Tomography Sensors
    Rasel, Rafiul K.
    Zuccarelli, Christopher E.
    Marashdeh, Qussai M.
    Fan, Liang-Shih
    Teixeira, Fernando L.
    IEEE SENSORS JOURNAL, 2017, 17 (24) : 8027 - 8036
  • [4] Dynamic Visualization Approach of the Multiphase Flow Using Electrical Capacitance Tomography
    Wang Zepu
    Chen Qi
    Wang Xueyao
    Li Zhihong
    Han Zhenxing
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2012, 20 (02) : 380 - 388
  • [5] An image reconstruction algorithm to testing flow patterns of multiphase flow for Electrical Capacitance Tomography
    Liu, Jing
    Xu, Wen-Zhong
    Jiang, Fan
    Lei, Jing
    Liu, Shi
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2011, 32 (04): : 602 - 606
  • [6] Dynamic image reconstruction method for electrical capacitance tomography in multiphase flow measurement
    School of Civil Engineering, Henan Polytechnic University, Jiaozuo
    454000, China
    不详
    100190, China
    不详
    102206, China
    Yi Qi Yi Biao Xue Bao, 10 (2355-2362):
  • [7] Real Time Measurement of Multiphase Flow Velocity using Electrical Capacitance Tomography
    Ghaly, Sidi Mohamed Ahmed
    Khan, Mohammad Obaidullah
    Shalaby, Mohammed
    Al-Snaie, Khaled A.
    Oraiqat, Majdi
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2023, 13 (05) : 11685 - 11690
  • [8] Multiphase Flow Measurement by Electrical Capacitance Tomography and Microwave Cavity Resonant Sensor
    Ramli, Mimi Faisyalini
    Avila, Heron E. L.
    de Sousa, Fernando Rangel
    Tian, Wenbin
    Yang, Wuqiang
    2019 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2019, : 1354 - 1359
  • [9] Measurement and analysis of water/oil multiphase flow using Electrical Capacitance Tomography sensor
    Mohamad, E. J.
    Rahim, R. A.
    Rahiman, M. H. F.
    Ameran, H. L. M.
    Muji, S. Z. M.
    Marwah, O. M. F.
    FLOW MEASUREMENT AND INSTRUMENTATION, 2016, 47 : 62 - 70
  • [10] Image reconstruction algorithms for electrical capacitance tomography
    Yang, WQ
    Peng, LH
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2003, 14 (01) : R1 - R13