TRANSVERSE LS CATEGORY FOR RIEMANNIAN FOLIATIONS

被引:3
|
作者
Hurder, Steven [1 ]
Toben, Dirk [2 ]
机构
[1] Univ Illinois, Dept Math, Chicago, IL 60607 USA
[2] Univ Cologne, Inst Math, D-50931 Cologne, Germany
关键词
Riemannian foliation; Lusternik-Schnirelmann category; Riemannian submersion; compact Hausdorff foliation; Epstein filtration; LUSTERNIK-SCHNIRELMANN CATEGORY; G-MANIFOLDS; GEOMETRY; SPACE;
D O I
10.1090/S0002-9947-09-04672-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
W study the transverse Lusternik-Schnirelmann category theory of a Riemannian foliation F on a closed manifold M. The essential transverse category cat (M,F) is introduced in this paper, and we prove that, cat(e), (M,F) is always finite for a Riemannian foliation Necessary and sufficient conditions are derived for when the usual transverse category cat (M,F) is finite, and thus cat(e) (M.F) = cat (M.F) holds. A fundamental point of this paper is to use properties of Riemannian submersions and the Molino Structure Theory for Riemannian foliations to transform the calculation of cat(e) (M, F) into a standard problem about O(q)- equivariant LS category theory A main result, Theorem 1.6; states that for an associated O(q)-manifold (W) over cap, we have that cat(e), (M,F) = cat(O(q))((W) over cap) Hence, the traditional techniques developed for the study of smooth compact Lie group actions can be effectively employed for the study of the LS category of Riemannian foliations. A generalization of the Lusternik-Schnirelmann theorem is derived given a C-1-function f.M -> R which is constant along the leaves of a Riemannian foliation F, the essential transverse category cat(e). (M,F) is a lower bound for the number of critical leaf closures of f
引用
收藏
页码:5647 / 5680
页数:34
相关论文
共 50 条
  • [31] Minimal singular riemannian foliations
    Miquel, V
    Wolak, RA
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (01) : 33 - 36
  • [32] Riemannian foliations and eigenvalue comparison
    Lee, JM
    Richardson, K
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1998, 16 (06) : 497 - 525
  • [33] Manifolds of maps in Riemannian foliations
    Macias-Virgós, E
    Sanmartín Carbón, E
    GEOMETRIAE DEDICATA, 2000, 79 (02) : 143 - 156
  • [34] MINIMAL SETS OF RIEMANNIAN FOLIATIONS
    ZHUKOVA, NI
    MALYSHEVA, EL
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1986, (09): : 38 - 45
  • [35] Riemannian foliations and geometric quantization
    Lin, Yi
    Loizides, Yiannis
    Sjamaar, Reyer
    Song, Yanli
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 198
  • [36] Riemannian foliations of bounded geometry
    Alvarez Lopez, Jesus A.
    Kordyukov, Yuri A.
    Leichtnam, Eric
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (14-15) : 1589 - 1608
  • [37] ON RIEMANNIAN FOLIATIONS WITH MINIMAL LEAVES
    LOPEZ, JAA
    ANNALES DE L INSTITUT FOURIER, 1990, 40 (01) : 163 - 176
  • [38] DUALITY AND MINIMALITY IN RIEMANNIAN FOLIATIONS
    MASA, X
    COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (01) : 17 - 27
  • [39] Singular riemannian foliations with sections
    Alexandrino, MM
    ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (04) : 1163 - 1182
  • [40] Minimizability of developable Riemannian foliations
    Hiraku Nozawa
    Annals of Global Analysis and Geometry, 2010, 38 : 119 - 133