Image reconstruction using genetic algorithm in electrical impedance tomography

被引:0
|
作者
Kim, Ho-Chan [1 ]
Boo, Chang-Jin [1 ]
Kang, Min-Jae [1 ]
机构
[1] Cheju Natl Univ, Fac Elect & Elect Engn, Cheju, South Korea
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In electrical impedance tomography (EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents a genetic algorithm technique for the solution of the static EIT inverse problem. The computer simulation for the 32 channels synthetic data shows that the spatial resolution of reconstructed images in the proposed scheme is improved compared to that of the modified Newton-Raphson algorithm at the expense of increased computational burden.
引用
收藏
页码:938 / 945
页数:8
相关论文
共 50 条
  • [21] Image Reconstruction Using Interval Simulated Annealing in Electrical Impedance Tomography
    Martins, Thiago de Castro
    Leon Bueno de Camargo, Erick Dario
    Lima, Raul Gonzalez
    Passos Amato, Marcelo Britto
    Guerra Tsuzuki, Marcos de Sales
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (07) : 1861 - 1870
  • [22] Multimodal Image Reconstruction of Electrical Impedance Tomography Using Kernel Method
    Liu, Zhe
    Yang, Yunjie
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [23] Electrical Impedance Tomography Reconstruction using Hybrid Variation Regularization Algorithm
    Zhang, Shuai
    Guo, Yunge
    Zhang, Xueying
    Xu, Guizhi
    2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC), 2016,
  • [24] A three-dimensional image reconstruction algorithm for electrical impedance tomography using planar electrode arrays
    Perez, Husein
    Pidcock, Michael
    Sebu, Cristiana
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2017, 25 (04) : 471 - 491
  • [25] Logistic regression in image reconstruction in electrical impedance tomography
    Kozlowski, Edward
    Rymarczyk, Tomasz
    Klosowski, Grzegorz
    Cieplak, Tomasz
    PRZEGLAD ELEKTROTECHNICZNY, 2020, 96 (05): : 95 - 98
  • [26] UNet model in image reconstruction for electrical impedance tomography
    Maciura, Lukasz
    Wojcik, Dariusz
    Rosa, Wojciech
    Rymarczyk, Tomasz
    Maj, Michal
    PRZEGLAD ELEKTROTECHNICZNY, 2022, 98 (04): : 123 - 126
  • [27] Lobe based image reconstruction in Electrical Impedance Tomography
    Schullcke, Benjamin
    Gong, Bo
    Krueger-Ziolek, Sabine
    Tawhai, Merryn
    Adler, Andy
    Mueller-Lisse, Ullrich
    Moeller, Knut
    MEDICAL PHYSICS, 2017, 44 (02) : 426 - 436
  • [28] New regularized image reconstruction for electrical impedance tomography
    Hou, WD
    Mo, YL
    IMAGE MATCHING AND ANALYSIS, 2001, 4552 : 286 - 291
  • [29] Image reconstruction with discontinuous coefficient in electrical impedance tomography
    Rymarczyk, Tomasz
    Filipowicz, Stefan F.
    Sikora, Jan
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (05): : 149 - 151
  • [30] Measurement Methods and Image Reconstruction in Electrical Impedance Tomography
    Filipowicz, Stefan F.
    Rymarczyk, Tomasz
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (06): : 247 - 250