Stochastic systems with delay: Perturbation theory for second order statistics

被引:5
|
作者
Frank, T. D. [1 ,2 ]
机构
[1] Univ Connecticut, Dept Psychol, Storrs, CT 06269 USA
[2] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
关键词
Delay; Autocorrelation function; Fokker-Planck equation; INDUCED TRANSITIONS; STATE TRANSITIONS; TIME-DELAY; NOISE; OSCILLATIONS; BISTABILITY; DYNAMICS; DEFECTS; MODEL; CHAOS;
D O I
10.1016/j.physleta.2016.02.011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Within the framework of delay Fokker-Planck equations, a perturbation theoretical method is developed to determine second-order statistical quantities such as autocorrelation functions for stochastic systems with delay. Two variants of the perturbation theoretical approach are presented. The first variant is based on a non-local Fokker-Planck operator. The second variant requires to solve a Fokker-Planck equation with source term. It is shown that the two variants yield consistent results. The perturbation theoretical approaches are applied to study negative autocorrelations that are induced by feedback delays and mediated by the strength of the fluctuating forces that act on the feedback systems. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1341 / 1351
页数:11
相关论文
共 50 条
  • [21] Vorticity generation at second order in cosmological perturbation theory
    Christopherson, Adam J.
    Malik, Karim A.
    Matravers, David R.
    PHYSICAL REVIEW D, 2009, 79 (12):
  • [22] MAGNETIC MOMENT CORRECTIONS TO SECOND ORDER IN PERTURBATION THEORY
    MAVROMATIS, HA
    ZAMICK, L
    PHYSICS LETTERS, 1966, 20 (02): : 171 - +
  • [23] Dirac Liquid Theory: Second Order Perturbation Approach
    Fujimoto, Junji
    Fuseya, Yuki
    Miyake, Kazumasa
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2012, 81
  • [24] Second-order perturbation theory with the contact interaction
    Power, J. D.
    Pitzer, R. M.
    CHEMICAL PHYSICS LETTERS, 1971, 8 (06) : 615 - 621
  • [25] Hybrid stochastic-deterministic calculation of the second-order perturbative contribution of multireference perturbation theory
    Garniron, Yann
    Scemama, Anthony
    Loos, Pierre-Francois
    Caffarel, Michel
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (03):
  • [26] A Guided Stochastic Energy-Domain Formulation of the Second Order Moller-Plesset Perturbation Theory
    Ge, Qinghui
    Gao, Yi
    Baer, Roi
    Rabani, Eran
    Neuhauser, Daniel
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (01): : 185 - 189
  • [27] CONSTRUCTION OF LYAPUNOV STOCHASTIC FUNCTIONAL FOR DELAY SYSTEMS BY THE PERTURBATION METHOD
    KORENEVSKY, DG
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1982, (07): : 18 - 22
  • [28] Stabilization Domains for Second Order Delay Systems
    Elmadssia, Sami
    Saadaoui, Karim
    Zaguia, Atef
    Ezzedine, Tahar
    Wang, Qing-Guo
    IEEE ACCESS, 2021, 9 (09): : 53518 - 53529
  • [29] Second Order Local Moller-Plesset Perturbation Theory for Periodic Systems: the CRYSCOR Code
    Usvyat, Denis
    Maschio, Lorenzo
    Pisani, Cesare
    Schuetz, Martin
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2010, 224 (3-4): : 441 - 454
  • [30] Second-order many-body perturbation-theory calculations in extended systems
    Sun, JQ
    Bartlett, RJ
    JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (21): : 8553 - 8565