CONVOLUTIONAL NEURAL NETWORKS IN PHASE SPACE AND INVERSE PROBLEMS

被引:1
|
作者
Uhlmann, Gunther [1 ,2 ]
Wang, Yiran [3 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Hong Kong Univ Sci & Technol, Inst Adv Study, Clear Water Bay, Hong Kong, Peoples R China
[3] Emory Univ, Dept Math, Atlanta, GA 30322 USA
关键词
convolutional neural networks; inverse problems; MULTILAYER FEEDFORWARD NETWORKS; PROGRESSING WAVES; SINGULARITIES; EQUATIONS;
D O I
10.1137/19M1294484
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study inverse problems consisting of determining medium properties using the responses to probing waves from the machine learning point of view. Based on the analysis of propagation of waves and their nonlinear interactions, we construct a deep convolutional neural network to reconstruct the coefficients of nonlinear wave equations that model the medium properties. Furthermore, for given approximation accuracy, we obtain the depth and number of units of the network and their quantitative dependence on the complexity of the medium.
引用
收藏
页码:2560 / 2585
页数:26
相关论文
共 50 条
  • [41] Wrapped phase denoising using convolutional neural networks
    Yan, Ketao
    Yu, Yingjie
    Sun, Tao
    Asundi, Anand
    Kemao, Qian
    OPTICS AND LASERS IN ENGINEERING, 2020, 128
  • [42] A-phase classification using convolutional neural networks
    Edgar R. Arce-Santana
    Alfonso Alba
    Martin O. Mendez
    Valdemar Arce-Guevara
    Medical & Biological Engineering & Computing, 2020, 58 : 1003 - 1014
  • [43] Phase Mapping in EBSD Using Convolutional Neural Networks
    Kaufmann, Kevin
    Zhu, Chaoyi
    Rosengarten, Alexander S.
    Maryanovsky, Daniel
    Wang, Haoren
    Vecchio, Kenneth S.
    MICROSCOPY AND MICROANALYSIS, 2020, 26 (03) : 458 - 468
  • [44] Detection of Phase Transition via Convolutional Neural Networks
    Tanaka, Akinori
    Tomiya, Akio
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2017, 86 (06)
  • [45] A-phase classification using convolutional neural networks
    Arce-Santana, Edgar R.
    Alba, Alfonso
    Mendez, Martin O.
    Arce-Guevara, Valdemar
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2020, 58 (05) : 1003 - 1014
  • [46] Hierarchical visualization of materials space with graph convolutional neural networks
    Xie, Tian
    Grossman, Jeffrey C.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (17):
  • [47] Design Space Exploration of FPGA Accelerators for Convolutional Neural Networks
    Rahman, Atul
    Oh, Sangyun
    Lee, Jongeun
    Choi, Kiyoung
    PROCEEDINGS OF THE 2017 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2017, : 1147 - 1152
  • [48] Automated Parking Space Detection Using Convolutional Neural Networks
    Nyambal, Julien
    Klein, Richard
    2017 PATTERN RECOGNITION ASSOCIATION OF SOUTH AFRICA AND ROBOTICS AND MECHATRONICS (PRASA-ROBMECH), 2017, : 1 - 6
  • [49] Convolutional Neural Networks for Inference of Space Object Attitude Status
    Gregory P. Badura
    Christopher R. Valenta
    Brian Gunter
    The Journal of the Astronautical Sciences, 2022, 69 : 593 - 626
  • [50] Deep Shading: Convolutional Neural Networks for Screen Space Shading
    Nalbach, O.
    Arabadzhiyska, E.
    Mehta, D.
    Seidel, H. -P.
    Ritschel, T.
    COMPUTER GRAPHICS FORUM, 2017, 36 (04) : 65 - 78