CONVOLUTIONAL NEURAL NETWORKS IN PHASE SPACE AND INVERSE PROBLEMS

被引:1
|
作者
Uhlmann, Gunther [1 ,2 ]
Wang, Yiran [3 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Hong Kong Univ Sci & Technol, Inst Adv Study, Clear Water Bay, Hong Kong, Peoples R China
[3] Emory Univ, Dept Math, Atlanta, GA 30322 USA
关键词
convolutional neural networks; inverse problems; MULTILAYER FEEDFORWARD NETWORKS; PROGRESSING WAVES; SINGULARITIES; EQUATIONS;
D O I
10.1137/19M1294484
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study inverse problems consisting of determining medium properties using the responses to probing waves from the machine learning point of view. Based on the analysis of propagation of waves and their nonlinear interactions, we construct a deep convolutional neural network to reconstruct the coefficients of nonlinear wave equations that model the medium properties. Furthermore, for given approximation accuracy, we obtain the depth and number of units of the network and their quantitative dependence on the complexity of the medium.
引用
收藏
页码:2560 / 2585
页数:26
相关论文
共 50 条
  • [1] Convolutional Neural Networks for Inverse Problems in Imaging A review
    McCann, Michael T.
    Jin, Kyong Hwan
    Unser, Michael
    IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (06) : 85 - 95
  • [2] Convolutional Neural Networks for Multifrequency Electromagnetic Inverse Problems
    Li, Hao
    Chen, Lijia
    Qiu, Jinghui
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2021, 20 (08): : 1424 - 1428
  • [3] Application of Convolutional Neural Networks in Inverse Problems of Geoelectrics
    M. I. Shimelevich
    E. A. Rodionov
    I. E. Obornev
    E. A. Obornev
    Izvestiya, Physics of the Solid Earth, 2024, 60 (6) : 1215 - 1227
  • [4] Multi-resolution convolutional neural networks for inverse problems
    Wang, Feng
    Eljarrat, Alberto
    Mueller, Johannes
    Henninen, Trond R.
    Erni, Rolf
    Koch, Christoph T.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Multi-resolution convolutional neural networks for inverse problems
    Feng Wang
    Alberto Eljarrat
    Johannes Müller
    Trond R. Henninen
    Rolf Erni
    Christoph T. Koch
    Scientific Reports, 10
  • [6] Uncertainty Quantification in Inverse Scattering Problems With Bayesian Convolutional Neural Networks
    Wei, Zhun
    Chen, Xudong
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (06) : 3409 - 3418
  • [7] Phoneme classification in reconstructed phase space with convolutional neural networks ?
    Wesley, R. John
    Khan, A. Nayeemulla
    Shahina, A.
    PATTERN RECOGNITION LETTERS, 2020, 135 : 299 - 306
  • [8] Equivariant neural networks for inverse problems
    Celledoni, Elena
    Ehrhardt, Matthias J.
    Etmann, Christian
    Owren, Brynjulf
    Schonlieb, Carola-Bibiane
    Sherry, Ferdia
    INVERSE PROBLEMS, 2021, 37 (08)
  • [9] Neural networks for quantum inverse problems
    Cao, Ningping
    Xie, Jie
    Zhang, Aonan
    Hou, Shi-Yao
    Zhang, Lijian
    Zeng, Bei
    NEW JOURNAL OF PHYSICS, 2022, 24 (06):
  • [10] Deep Convolutional Neural Network for Inverse Problems in Imaging
    Jin, Kyong Hwan
    McCann, Michael T.
    Froustey, Emmanuel
    Unser, Michael
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (09) : 4509 - 4522