Hybrid quantum devices and quantum engineering

被引:263
|
作者
Wallquist, M. [1 ,2 ]
Hammerer, K. [1 ,2 ]
Rabl, P. [3 ,4 ]
Lukin, M. [3 ,4 ]
Zoller, P. [1 ,2 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[3] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
TRAPPED IONS; ONE-ATOM; MICROMECHANICAL RESONATOR; SUPERCONDUCTING QUBITS; RADIATION-PRESSURE; OPTICAL LATTICE; ELECTRON-SPIN; BACK-ACTION; CAVITY; PHOTON;
D O I
10.1088/0031-8949/2009/T137/014001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss prospects of building hybrid quantum devices involving elements of atomic and molecular physics, quantum optics and solid-state elements with the attempt to combine advantages of the respective systems in compatible experimental setups. In particular, we summarize our recent work on quantum hybrid devices and briefly discuss recent ideas for quantum networks. These include interfacing of molecular quantum memory with circuit QED, and using nanomechanical elements strongly coupled to qubits represented by electronic spins, as well as single atoms or atomic ensembles.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] SINGLE-ATOM DEVICES Quantum engineering
    Fernandez Rossier, J.
    NATURE MATERIALS, 2013, 12 (06) : 480 - 481
  • [12] The engineering of quantum-dot devices - Discussion
    Dobson, PJ
    Kelly, MJ
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 361 (1803): : 401 - 401
  • [13] Hybrid superconductor-quantum dot devices
    De Franceschi, Silvano
    Kouwenhoven, Leo
    Schoenenberger, Christian
    Wernsdorfer, Wolfgang
    NATURE NANOTECHNOLOGY, 2010, 5 (10) : 703 - 711
  • [14] Special Issue on hybrid quantum materials and devices
    Roddaro, Stefano
    Fischer, Saskia F.
    Ishibashi, Koji
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (03)
  • [15] Hybrid Quantum Well/Quantum Dot Structures for Broad Spectral Bandwidth Devices
    Chen, Siming
    Zhou, Kejia
    Zhang, Ziyang
    Childs, David T. D.
    Orchard, Jonathan R.
    Hogg, Richard A.
    Kennedy, Kenneth
    Hugues, Max
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XX, 2012, 8255
  • [16] Quantum Engineering With Hybrid Magnonic Systems and Materials
    Awschalom D.D.
    Du C.R.
    He R.
    Joseph Heremans F.
    Hoffmann A.
    Hou J.
    Kurebayashi H.
    Li Y.
    Liu L.
    Novosad V.
    Sklenar J.
    Sullivan S.E.
    Sun D.
    Tang H.
    Tyberkevych V.
    Trevillian C.
    Tsen A.W.
    Weiss L.R.
    Zhang W.
    Zhang X.
    Zhao L.
    Zollitsch C.H.W.
    IEEE Transactions on Quantum Engineering, 2021, 2
  • [17] Hybrid architecture for engineering magnonic quantum networks
    Rusconi, C. C.
    Schuetz, M. J. A.
    Gieseler, J.
    Lukin, M. D.
    Romero-Isart, O.
    PHYSICAL REVIEW A, 2019, 100 (02)
  • [18] Hybrid quantum device with a carbon nanotube and a flux qubit for dissipative quantum engineering
    Wang, Xin
    Miranowicz, Adam
    Li, Hong-Rong
    Nori, Franco
    PHYSICAL REVIEW B, 2017, 95 (20)
  • [19] BANDGAP ENGINEERING AND QUANTUM-WELLS IN OPTOELECTRONIC DEVICES
    LI, EH
    WEISS, BL
    ELECTRONICS & COMMUNICATION ENGINEERING JOURNAL, 1991, 3 (02): : 63 - 79
  • [20] Theory of Hybrid Microwave-Photonic Quantum Devices
    Jirauschek, Christian
    LASER & PHOTONICS REVIEWS, 2023, 17 (12)