On a filter for exponentially localized kernels based on Jacobi polynomials

被引:13
|
作者
Filbir, F. [2 ]
Mhaskar, H. N. [1 ]
Prestin, J. [3 ]
机构
[1] Calif State Univ Los Angeles, Dept Math, Los Angeles, CA 90032 USA
[2] Helmholtz Ctr Munich, Inst Biomath & Biometry, D-85764 Neuherberg, Germany
[3] Med Univ Lubeck, Inst Math, D-23560 Lubeck, Germany
基金
美国国家科学基金会;
关键词
Spectral approximation; Detection of analytic singularities; Polynomial frames; Filters and mollifiers; Riesz basis; SMOOTHNESS CLASSES; APPROXIMATION; OPERATORS; EDGES;
D O I
10.1016/j.jat.2009.01.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha, beta >= - 1/2 and for k = 0, 1, ..., p(k)((alpha, beta)) denote the orthonormalized Jacobi polynomial of degree k. k. We discuss the construction of a matrix H so that there exist positive constants c, cl, depending only on H, alpha, and beta such that vertical bar Sigma H-infinity(k=0)k, (n)p(k)((alpha, beta))(cos theta)p(k)((alpha, beta))(cos phi)vertical bar <= c(1)n(2max(alpha, beta)+2) exp(-cn(theta - phi)(2)), theta, phi is an element of [0, pi], n = 1, 2, .... Specializing to the case of Chebyshev polynomials, alpha=beta=-1/2, we apply this theory to obtain a construction of an exponentially localized polynomial basis for the corresponding L-2 space. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:256 / 280
页数:25
相关论文
共 50 条
  • [41] ZEROS OF COMBINATIONS OF JACOBI POLYNOMIALS
    AHMED, S
    BRUSCHI, M
    LETTERE AL NUOVO CIMENTO, 1978, 22 (05): : 178 - 182
  • [42] Jacobi-Dunkl summation kernels
    Haouala, Iness
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [43] A NEW FORMULA FOR JACOBI POLYNOMIALS
    SHARMA, BL
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1967, 63 : 1045 - &
  • [44] Generalized Jacobi orthogonal polynomials
    Bouras, B.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (10) : 715 - 730
  • [45] A GENERATING FUNCTION FOR JACOBI POLYNOMIALS
    SAXENA, RK
    CANADIAN MATHEMATICAL BULLETIN, 1966, 9 (02): : 209 - &
  • [46] Matrix valued Jacobi polynomials
    Grünbaum, FA
    BULLETIN DES SCIENCES MATHEMATIQUES, 2003, 127 (03): : 207 - 214
  • [47] A simple approach to Jacobi polynomials
    Weber, H. J.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (03) : 217 - 221
  • [48] On the Integral Representation of Jacobi Polynomials
    De Micheli, Enrico
    MATHEMATICS, 2025, 13 (03)
  • [49] Zeros of Jacobi and ultraspherical polynomials
    Arvesu, J.
    Driver, K.
    Littlejohn, L. L.
    RAMANUJAN JOURNAL, 2023, 61 (02): : 629 - 648
  • [50] On Jacobi and continuous Hahn polynomials
    Koelink, HT
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (03) : 887 - 898