On a filter for exponentially localized kernels based on Jacobi polynomials

被引:13
|
作者
Filbir, F. [2 ]
Mhaskar, H. N. [1 ]
Prestin, J. [3 ]
机构
[1] Calif State Univ Los Angeles, Dept Math, Los Angeles, CA 90032 USA
[2] Helmholtz Ctr Munich, Inst Biomath & Biometry, D-85764 Neuherberg, Germany
[3] Med Univ Lubeck, Inst Math, D-23560 Lubeck, Germany
基金
美国国家科学基金会;
关键词
Spectral approximation; Detection of analytic singularities; Polynomial frames; Filters and mollifiers; Riesz basis; SMOOTHNESS CLASSES; APPROXIMATION; OPERATORS; EDGES;
D O I
10.1016/j.jat.2009.01.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha, beta >= - 1/2 and for k = 0, 1, ..., p(k)((alpha, beta)) denote the orthonormalized Jacobi polynomial of degree k. k. We discuss the construction of a matrix H so that there exist positive constants c, cl, depending only on H, alpha, and beta such that vertical bar Sigma H-infinity(k=0)k, (n)p(k)((alpha, beta))(cos theta)p(k)((alpha, beta))(cos phi)vertical bar <= c(1)n(2max(alpha, beta)+2) exp(-cn(theta - phi)(2)), theta, phi is an element of [0, pi], n = 1, 2, .... Specializing to the case of Chebyshev polynomials, alpha=beta=-1/2, we apply this theory to obtain a construction of an exponentially localized polynomial basis for the corresponding L-2 space. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:256 / 280
页数:25
相关论文
共 50 条