Altered purinergic receptor-Ca2+ signaling associated with hypoxia-induced epithelial-mesenchymal transition in breast cancer cells

被引:69
|
作者
Azimi, Iman [1 ,7 ]
Beilby, Hannah [1 ]
Davis, Felicity M. [1 ]
Marcial, Daneth L. [1 ]
Kenny, Paraic A. [2 ]
Thompson, Erik W. [3 ,4 ,5 ,6 ]
Roberts-Thomson, Sarah J. [1 ]
Monteith, Gregory R. [1 ,7 ]
机构
[1] Univ Queensland, Sch Pharm, Brisbane, Qld, Australia
[2] Gunderson Med Fdn, Kabara Canc Res Inst, La Crosse, WI USA
[3] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Kelvin Grove, Qld, Australia
[4] Queensland Univ Technol, Sch Biomed Sci, Kelvin Grove, Qld, Australia
[5] Univ Melbourne, Dept Surg, St Vincents Hosp, Fitzroy, Vic 3065, Australia
[6] St Vincents Inst Med Res, 41 Victoria Parade, Fitzroy, Vic 3065, Australia
[7] Univ Queensland, Mater Res Inst, Translat Res Inst, Brisbane, Qld, Australia
基金
英国医学研究理事会;
关键词
Breast cancer; Hypoxia; Calcium; Epithelial-mesenchymal transition; Purinergic receptors; P2Y(6) RECEPTOR; PROTEIN-KINASE; MIGRATION; ACTIVATION; CALCIUM; ATP; METASTASIS; MECHANISMS; INVASION; SUBTYPE;
D O I
10.1016/j.molonc.2015.09.006
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Hypoxia is a feature of the microenvironment of many cancers and can trigger epithelialmesenchymal transition (EMT), a process by which cells acquire a more invasive phenotype with enriched survival. A remodeling of adenosine 5'-triphosphate (ATP)-induced Ca2+ signaling via purinergic receptors is associated with epidermal growth factor (EGF)induced EMT in MDA-MB-468 breast cancer cells. Here, we assessed ATP -mediated Ca2+ signaling in a model of hypoxia-induced EMT in MDA-MB-468 cells. Like EGF, hypoxia treatment (1% O-2) was also associated with a significant reduction in the sensitivity of MDA-MB-468 cells to ATP (EC50 of 0.5 mu M for normoxic cells versus EC50 of 5.8 mu M for hypoxic cells). Assessment of mRNA levels of a panel of P2X and P2Y purinergic receptors following hypoxia revealed a change in levels of a suite of purinergic receptors. P2X4, P2X5, P2X7, P2Y1 and P2Y11 mRNAs decreased with hypoxia, whereas P2Y6 mRNA increased. Up regulation of P2Y6 was a common feature of both growth factor- and hypoxia-induced models of EMT. P2Y6 levels were also significantly increased in basal-like breast tumors compared to other subtypes and breast cancer patients with higher P2Y6 levels showed reduced overall survival rates. P2Y6 siRNA-mediated silencing and the P2Y6 pharmacological inhibitor MRS2578 reduced hypoxia-induced vimentin protein expression in MDA-MB468 cells. P2Y6 inhibition also reduced the migration of mesenchymal-like MDA-MB-231 breast cancer cells. The up-regulation of P2Y6 appears to be a common feature of the mesenchymal phenotype of breast cancer cells and inhibition of this receptor may represent a novel therapeutic target in breast cancer metastasis. (C) 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:166 / 178
页数:13
相关论文
共 50 条
  • [31] HIF-1α mediates Hypoxia-induced epithelial-mesenchymal transition in peritoneal mesothelial cells
    Morishita, Yoshiyuki
    Ookawara, Susumu
    Hirahara, Ichiro
    Muto, Shigeaki
    Nagata, Daisuke
    RENAL FAILURE, 2016, 38 (02) : 282 - 289
  • [32] miR-210, a modulator of hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cell
    Ding, Lu
    Zhao, Le
    Chen, Wei
    Liu, Ting
    Li, Zhen
    Li, Xu
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2015, 8 (02): : 2299 - 2307
  • [33] The epithelial-mesenchymal transition of gastric cancer cells was stimulated by TGFβR signaling in hypoxia
    Matsuoka, Junko
    Yashiro, Masakazu
    Aomatsu, Naoki
    Hirakawa, Toshiki
    Hasegawa, Tsuyoshi
    Fukuoka, Tatsunari
    Morisaki, Tamami
    Kubo, Naoshi
    Tanaka, Hiroaki
    Muguruma, Kazuya
    Yamada, Nobuya
    Ohira, Masaichi
    Ishikawa, Tetsuro
    Hirakawa, Kosei
    CANCER RESEARCH, 2012, 72
  • [34] Hypoxia-Induced PLOD2 is a Key Regulator in Epithelial-Mesenchymal Transition and Chemoresistance in Biliary Tract Cancer
    Yuichiro Okumura
    Takehiro Noda
    Hidetoshi Eguchi
    Takuya Sakamoto
    Yoshifumi Iwagami
    Daisaku Yamada
    Tadafumi Asaoka
    Hiroshi Wada
    Koichi Kawamoto
    Kunihito Gotoh
    Shogo Kobayashi
    Yutaka Takeda
    Masahiro Tanemura
    Koji Umeshita
    Yuichiro Doki
    Masaki Mori
    Annals of Surgical Oncology, 2018, 25 : 3728 - 3737
  • [35] Hypoxia-Induced PLOD2 is a Key Regulator in Epithelial-Mesenchymal Transition and Chemoresistance in Biliary Tract Cancer
    Okumura, Yuichiro
    Noda, Takehiro
    Eguchi, Hidetoshi
    Sakamoto, Takuya
    Iwagami, Yoshifumi
    Yamada, Daisaku
    Asaoka, Tadafumi
    Wada, Hiroshi
    Kawamoto, Koichi
    Gotoh, Kunihito
    Kobayashi, Shogo
    Takeda, Yutaka
    Tanemura, Masahiro
    Umeshita, Koji
    Doki, Yuichiro
    Mori, Masaki
    ANNALS OF SURGICAL ONCOLOGY, 2018, 25 (12) : 3728 - 3737
  • [36] Hypoxia-Induced Epithelial-Mesenchymal Transition in Cancers: HIF-1α and Beyond
    Tam, Shing Yau
    Wu, Vincent W. C.
    Law, Helen K. W.
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [37] Hypoxia-Induced Epithelial-Mesenchymal Transition Is Involved in Bleomycin-Induced Lung Fibrosis
    Guo, Liang
    Xu, Jun-mei
    Liu, Lei
    Liu, Su-mei
    Zhu, Rong
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [38] Addendum: Glucose-Regulated Protein 78 Signaling Regulates Hypoxia-Induced Epithelial-Mesenchymal Transition in A549 Cells
    Sun, Ling-Ling
    Chen, Chang-Ming
    Zhang, Jue
    Wang, Jing
    Yang, Cai-Zhi
    Lin, Li-Zhu
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [39] Attenuation of reactive oxygen species by antioxidants suppresses hypoxia-induced epithelial-mesenchymal transition and metastasis of pancreatic cancer cells
    Shimojo, Yoshihide
    Akimoto, Miho
    Hisanaga, Tsunehiro
    Tanaka, Tsuneo
    Tajima, Yoshitsugu
    Honma, Yoshio
    Takenaga, Keizo
    CLINICAL & EXPERIMENTAL METASTASIS, 2013, 30 (02) : 143 - 154
  • [40] Inhibitory effects of dieckol on hypoxia-induced epithelial-mesenchymal transition of HT29 human colorectal cancer cells
    Jeong, Seung-Hyun
    Jeon, You-Jin
    Park, Sun Joo
    MOLECULAR MEDICINE REPORTS, 2016, 14 (06) : 5148 - 5154