Fine asymptotic behavior for eigenvalues of random normal matrices: Ellipse case

被引:26
|
作者
Lee, Seung-Yeop [1 ]
Riser, Roman [2 ]
机构
[1] Univ S Florida, Dept Math, 4202 East Fowler Ave, Tampa, FL 33620 USA
[2] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B, B-3001 Leuven, Belgium
关键词
RIEMANN-HILBERT APPROACH; ORTHOGONAL POLYNOMIALS; EXPONENTIAL WEIGHTS; RESPECT; QUESTIONS; ENSEMBLES; KERNELS; GROWTH;
D O I
10.1063/1.4939973
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the random normal matrices with quadratic external potentials where the associated orthogonal polynomials are Hermite polynomials and the limiting support (called droplet) of the eigenvalues is an ellipse. We calculate the density of the eigenvalues near the boundary of the droplet up to the second subleading corrections and express the subleading corrections in terms of the curvature of the droplet boundary. From this result, we additionally get the expected number of eigenvalues outside the droplet. We also show that a certain Cauchy transform of the orthogonal polynomial vanishes in the bulk of the droplet up to an exponentially small error. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Real Eigenvalues of Elliptic Random Matrices
    Byun, Sung-Soo
    Kang, Nam-Gyu
    Lee, Ji Oon
    Lee, Jinyeop
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (03) : 2243 - 2280
  • [32] On fluctuations of eigenvalues of random hermitian matrices
    Johansson, K
    DUKE MATHEMATICAL JOURNAL, 1998, 91 (01) : 151 - 204
  • [33] Asymptotic integral kernel for ensembles of random normal matrices with radial potentials
    Veneziani, Alexei M.
    Pereira, Tiago
    Marchetti, Domingos H. U.
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (02)
  • [35] THE EIGENVALUES OF RANDOM SYMMETRIC-MATRICES
    FUREDI, Z
    KOMLOS, J
    COMBINATORICA, 1981, 1 (03) : 233 - 241
  • [36] DENSITY OF EIGENVALUES OF RANDOM BAND MATRICES
    KUS, M
    LEWENSTEIN, M
    HAAKE, F
    PHYSICAL REVIEW A, 1991, 44 (05): : 2800 - 2808
  • [37] Distribution of Subdominant Eigenvalues of Random Matrices
    G. Goldberg
    P. Okunev
    M. Neumann
    H. Schneider
    Methodology And Computing In Applied Probability, 2000, 2 (2) : 137 - 151
  • [38] RANDOM MATRICES: SHARP CONCENTRATION OF EIGENVALUES
    Tao, Terence
    Vu, Van
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2013, 2 (03)
  • [39] On the structural eigenvalues of block random matrices
    Juhasz, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 246 : 225 - 231
  • [40] CORRELATION BETWEEN EIGENVALUES OF RANDOM MATRICES
    VODAI, T
    DEROME, JR
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1975, 30 (02): : 239 - 253