Image Classification Approach Based on Manifold Learning in Web Image Mining

被引:0
|
作者
Zhu, Rong [1 ]
Yao, Min [1 ]
Liu, Yiming [1 ]
机构
[1] Zhejiang Univ, Sch Comp Sci & Technol, Hangzhou 310027, Peoples R China
关键词
Web image mining; Data mining; Image classification; Dimensionality reduction; Manifold learning; Distance measure; PERFORMANCE; ICA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic image classification is a challenging research topic in Web image mining. In this paper, we formulate image classification problem as the calculation of the distance measure between training manifold and test manifold. We propose an improved nonlinear dimensionality reduction algorithm based on neighborhood optimization, not only to decrease feature dimensionality but also to transform the problem from high-dimensional data space into low-dimensional feature space. Considering that the images in most real-world applications have large diversities within category and among categories, we propose a new scheme to construct a set of training manifolds each representing, one semantic category and partition each nonlinear manifold into several linear sub-manifolds via region growing. Moreover, to further reduce computational complexity, each sub-manifold is depicted by aggregation center. Experimental results on two Web image sets demonstrate the feasibility and effectiveness of the proposed approach.
引用
收藏
页码:780 / 787
页数:8
相关论文
共 50 条
  • [31] A NOVEL MANIFOLD LEARNING FOR DIMENSIONALITY REDUCTION AND CLASSIFICATION WITH HYPERSPECTRAL IMAGE
    Zheng, Zezhong
    Chen, Pengxu
    Zhu, Mingcang
    Huang, Zhiqin
    Lu, Yufeng
    Feng, Yicong
    Li, Jiang
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [32] Deep Learning Approach for Image Classification
    Panigrahi, Santisudha
    Nanda, Anuja
    Swamkar, Tripti
    2ND INTERNATIONAL CONFERENCE ON DATA SCIENCE AND BUSINESS ANALYTICS (ICDSBA 2018), 2018, : 511 - 516
  • [33] Manifold sparse coding based hyperspectral image classification
    Peng, Yanbin (pyb2010@126.com), 1600, Science and Engineering Research Support Society, PO Box 5014Sandy Bay, TAS, Tasmania 7005, Australia (09):
  • [34] Image Classification using Manifold Learning Based Non-Linear Dimensionality Reduction
    Faaeq, Ainuddin
    Guruler, Huseyin
    Peker, Musa
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [35] Hyperspectral image classification based on manifold spectral dimensionality reduction and deep learning method
    Shi Y.
    Ma D.
    Lyu J.
    Li J.
    Shi J.
    Lyu, Jie (rsxust@163.com), 1600, Chinese Society of Agricultural Engineering (36): : 151 - 160
  • [36] RIEMANNIAN MANIFOLD LEARNING BASED k-NEAREST-NEIGHBOR FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Chen, Yushi
    Lin, Zhouhan
    Zhao, Xing
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1975 - 1978
  • [37] Building Robust Neighborhoods for Manifold Learning-Based Image Classification and Anomaly Detection
    Doster, Timothy
    Olson, Colin C.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXII, 2016, 9840
  • [38] HYPERSPECTRAL IMAGE CLASSIFICATION USING LOCAL SPECTRAL ANGLE-BASED MANIFOLD LEARNING
    Luo, Fulin
    Liu, Jiamin
    Huang, Hong
    Liu, Yumei
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2014, 28 (06)
  • [39] Graph Convolutional Networks based on manifold learning for semi-supervised image classification
    Valem, Lucas Pascotti
    Pedronette, Daniel Carlos Guimaraes
    Latecki, Longin Jan
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 227
  • [40] Graph-based Semi-supervised Learning with Manifold Preprocessing for Image Classification
    Gong, Yun-Chao
    Liu, Feng
    Chen, Chuanliang
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 391 - +