Regression modeling in many fields, such as credit rating, banking industry and macroeconomic studies, is an important approach. However, Multicollinearity in the independent variable sets is harmful to Ordinary Least Squares (OLS) Regression. Partial Least Squares (PLS) Regression enables modeling under the condition of multicollinearity. In the fields of Credit Rating, many independent variables are related functional data, and the dependent variable is a categorical variable. For these problems, Functional PLS-Logistic Regression provides an approach of building regression model under the condition of multicollinearity. Empirical study shows that the GDP per capita of provinces in China has an obvious distribution feature which ensures the reasonability of classify the provinces according to their geography locations.
机构:
Univ Grenoble Alpes, Lab Jean Kuntzman, 700 Ave Cent, F-38401 St Martin Dheres, FranceUniv Grenoble Alpes, Lab Jean Kuntzman, 700 Ave Cent, F-38401 St Martin Dheres, France
Bazzoli, Caroline
Lambert-Lacroix, Sophie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Grenoble Alpes, TIMC IMAG, 5 Ave Grand Sablon, F-38700 La Tronche, FranceUniv Grenoble Alpes, Lab Jean Kuntzman, 700 Ave Cent, F-38401 St Martin Dheres, France
机构:
Univ Calif Los Angeles, Semel Inst Neurosci & Human Behav, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Semel Inst Neurosci & Human Behav, Los Angeles, CA 90095 USA
机构:
Univ New SouthW, UNSW Data Sci Hub, Sydney, NSW 2052, Australia
Univ New SouthW, Sch Math & Stat, Sydney, NSW 2052, AustraliaUniv New SouthW, UNSW Data Sci Hub, Sydney, NSW 2052, Australia
Whitaker, T.
Beranger, B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ New SouthW, UNSW Data Sci Hub, Sydney, NSW 2052, Australia
Univ New SouthW, Sch Math & Stat, Sydney, NSW 2052, AustraliaUniv New SouthW, UNSW Data Sci Hub, Sydney, NSW 2052, Australia
Beranger, B.
Sisson, S. A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ New SouthW, UNSW Data Sci Hub, Sydney, NSW 2052, Australia
Univ New SouthW, Sch Math & Stat, Sydney, NSW 2052, AustraliaUniv New SouthW, UNSW Data Sci Hub, Sydney, NSW 2052, Australia