Linearly rigid metric spaces

被引:0
|
作者
Melleray, Julien
Petrov, Fedor
Vershik, Anatoly
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] VA Steklov Math Inst, St Petersburg Dept, St Petersburg 191023, Russia
关键词
D O I
10.1016/j.crma.2006.12.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is a well-known fact that any metric space admits an isometric embedding into a Banach space (Kantorovitch-Monge embedding); here, we introduce and study the class of metric spaces which admit a unique (up to isometry) linearly dense embedding into a Banach space. We call these spaces linearly rigid. The first example of such a space was obtained by R. Holmes, who proved that the Urysohn space is linearly rigid. We provide a necessary and sufficient condition for a space to be linearly rigid. Then we discuss some corollaries, including new examples of linearly rigid metric spaces.
引用
收藏
页码:235 / 240
页数:6
相关论文
共 50 条
  • [21] ON THE FARTHEST POINTS IN CONVEX METRIC SPACES AND LINEAR METRIC SPACES
    Sangeeta
    Narang, T. D.
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2014, 95 (109): : 229 - 238
  • [22] Embedding metric spaces into normed spaces and estimates of metric capacity
    Gennadiy Averkov
    Nico Düvelmeyer
    Monatshefte für Mathematik, 2007, 152 : 197 - 206
  • [23] Embedding metric spaces into normed spaces and estimates of metric capacity
    Averkov, Gennadiy
    Duevelmeyer, Nico
    MONATSHEFTE FUR MATHEMATIK, 2007, 152 (03): : 197 - 206
  • [24] Round and Sleek Subspaces of Linear Metric Spaces and Metric Spaces
    Singh, Jitender
    Narang, T.D.
    arXiv, 2022,
  • [25] On resolutions of linearly ordered spaces
    Caserta, Agata
    Giarlotta, Alfio
    Watson, Stephen
    APPLIED GENERAL TOPOLOGY, 2006, 7 (02): : 211 - 231
  • [26] Linearly Ordered Coarse Spaces
    Protasov I.
    Journal of Mathematical Sciences, 2022, 268 (2) : 233 - 238
  • [27] COUNTING LINEARLY ORDERED SPACES
    Kuba, Gerald
    COLLOQUIUM MATHEMATICUM, 2014, 135 (01) : 1 - 14
  • [28] On spaces which are linearly D
    Guo Hongfeng
    Junnila, Heikki
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (01) : 102 - 107
  • [29] LINEARLY ORDERED TOPOLOGICAL SPACES
    GULDEN, SL
    FLEISCHM.WM
    WESTON, JH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 24 (01) : 197 - &
  • [30] Sequentially linearly Lindelof spaces
    Kojman, M
    Lubitch, V
    TOPOLOGY AND ITS APPLICATIONS, 2003, 128 (2-3) : 135 - 144