Linearly rigid metric spaces

被引:0
|
作者
Melleray, Julien
Petrov, Fedor
Vershik, Anatoly
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] VA Steklov Math Inst, St Petersburg Dept, St Petersburg 191023, Russia
关键词
D O I
10.1016/j.crma.2006.12.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is a well-known fact that any metric space admits an isometric embedding into a Banach space (Kantorovitch-Monge embedding); here, we introduce and study the class of metric spaces which admit a unique (up to isometry) linearly dense embedding into a Banach space. We call these spaces linearly rigid. The first example of such a space was obtained by R. Holmes, who proved that the Urysohn space is linearly rigid. We provide a necessary and sufficient condition for a space to be linearly rigid. Then we discuss some corollaries, including new examples of linearly rigid metric spaces.
引用
收藏
页码:235 / 240
页数:6
相关论文
共 50 条
  • [1] Linearly rigid metric spaces and the embedding problem
    Melleray, J.
    Petrov, F. V.
    Vershik, A. M.
    FUNDAMENTA MATHEMATICAE, 2008, 199 (02) : 177 - 194
  • [2] On linearly rigid tuples
    Strambach, K
    Völklein, H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1999, 510 : 57 - 62
  • [3] Uniform Roe algebras of uniformly locally finite metric spaces are rigid
    Florent P. Baudier
    Bruno M. Braga
    Ilijas Farah
    Ana Khukhro
    Alessandro Vignati
    Rufus Willett
    Inventiones mathematicae, 2022, 230 : 1071 - 1100
  • [4] Uniform Roe algebras of uniformly locally finite metric spaces are rigid
    Baudier, Florent P.
    Braga, Bruno M.
    Farah, Ilijas
    Khukhro, Ana
    Vignati, Alessandro
    Willett, Rufus
    INVENTIONES MATHEMATICAE, 2022, 230 (03) : 1071 - 1100
  • [5] Approximation of metric spaces by partial metric spaces
    Heckmann, Reinhold
    Applied Categorical Structures, 7 (01): : 71 - 83
  • [6] From metric spaces to partial metric spaces
    Bessem Samet
    Calogero Vetro
    Francesca Vetro
    Fixed Point Theory and Applications, 2013
  • [7] ON METRIC SPACES INDUCED BY FUZZY METRIC SPACES
    Qiu, D.
    Dong, R.
    Li, H.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2016, 13 (02): : 145 - 160
  • [8] From metric spaces to partial metric spaces
    Samet, Bessem
    Vetro, Calogero
    Vetro, Francesca
    FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [9] THE EQUIVALENCE OF CONE METRIC SPACES AND METRIC SPACES
    Feng, Yuqiang
    Mao, Wei
    FIXED POINT THEORY, 2010, 11 (02): : 259 - 263
  • [10] Approximation of metric spaces by partial metric spaces
    Heckmann, R
    APPLIED CATEGORICAL STRUCTURES, 1999, 7 (1-2) : 71 - 83