An obstruction to small-time controllability of the bilinear Schrodinger equation

被引:4
|
作者
Beschastnyi, Ivan [1 ]
Boscain, Ugo [2 ]
Sigalotti, Mario [2 ]
机构
[1] Univ Aveiro, CIDMA, Aveiro, Portugal
[2] Univ Paris, Sorbonne Univ, CNRS, INRIA,Lab Jacques Louis Lions, Paris, France
关键词
D O I
10.1063/5.0003524
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we discuss which controllability properties of classical Hamiltonian systems are preserved after quantization. We discuss some necessary and some sufficient conditions for small-time controllability of classical systems and quantum systems using the WKB method. In particular, we investigate the conjecture that if the classical system is not small-time controllable, then the corresponding quantum system is not small-time controllable either.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Small-time behaviour
    FLUCTUATION THEORY FOR LEVY PROCESSES, 2007, 1897 : 115 - 132
  • [42] Small-time Perfect
    Hwang, Paoi
    ASIATIC-IIUM JOURNAL OF ENGLISH LANGUAGE AND LITERATURE, 2011, 5 (01): : 186 - 191
  • [43] Bilinear optimal control of a Schrodinger equation
    Cancès, E
    Le Bris, C
    Pilot, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (07): : 567 - 571
  • [44] SMALL-TIME LOCAL CONTROLLABILITY AND STABILIZABILITY OF SPACECRAFT ATTITUDE DYNAMICS UNDER CMG ACTUATION
    Bhat, Sanjay P.
    Paranjape, Aditya A.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (02) : 797 - 820
  • [45] ON THE RELATION BETWEEN SMALL-TIME LOCAL-CONTROLLABILITY AND NORMAL SELF-REACHABILITY
    GRASSE, KA
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1992, 5 (01) : 41 - 66
  • [46] Boundary controllability for the semilinear Schrodinger equation
    Deng, Li
    Yao, Peng-Fei
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 3423 - 3429
  • [47] Null Controllability of a Degenerate Schrodinger Equation
    Chrifi, Abderrazak
    Echarroudi, Younes
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (01)
  • [48] EXACT CONTROLLABILITY FOR THE SCHRODINGER-EQUATION
    MACHTYNGIER, E
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (01) : 24 - 34
  • [49] CONTROLLABILITY OF SCHRODINGER EQUATION WITH A NONLOCAL TERM
    De Leo, Mariano
    Sanchez Fernandez de la Vega, Constanza
    Rial, Diego
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2014, 20 (01) : 23 - 41