Catalytic Fast Pyrolysis of Biomass in a Fluidized Bed with Fresh and Spent Fluidized Catalytic Cracking (FCC) Catalysts

被引:108
|
作者
Zhang, Huiyan [1 ]
Xiao, Rui [1 ]
Wang, Denghui [1 ]
Zhong, Zhaoping [1 ]
Song, Min [1 ]
Pan, Qiwen [1 ]
He, Guangying [1 ]
机构
[1] Southeast Univ, Sch Energy & Environm, Nanjing 210096, Peoples R China
关键词
HZSM-5 ZEOLITE CATALYST; BIO-OIL; MESOPOROUS MATERIALS; REACTOR; LIQUID; DIESEL; TRANSFORMATION; HYDROCARBONS; DEGRADATION; EMULSIONS;
D O I
10.1021/ef900720m
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The conversion of biomass into bio-oil using fast pyrolysis technology is one of the most promising alternatives to convert biomass into liquid products. However, substituting bio-oil for conventional petroleum fuels directly may be problematic because of the high viscosity, high oxygen content, and strong thermal instability of bio-oil. The focus of the current research is decreasing the oxygen and polymerization precursor content of the obtained bio-oil to improve its thermal stability and heating value. Catalytic fast pyrolysis of corncob with different percentages (5, 10, 20, and 30% by volume) of fresh fluidized catalytic cracking (FCC) catalyst (FC) and spent FCC catalyst (SC) in bed materials was conducted in a fluidized bed. The effects of the catalysts oil the pyrolysis product yields and chemical composition of the bio-oil were investigated. A greater catalyst percentage lead to a lower bio-oil yield, while a lower catalyst percentage lead to little change of the composition of the bio-oil. The best percentages of FC and SC were 10 and 20%, respectively. FC showed more catalytic activation in converting oxygen into CO, CO2, and H2O than SC, but the oil fraction yield with FC was remarkably lower than that with SC because of more coke formation. The gas chromatography/mass spectrometry (GC/MS) analysis of the collected liquid in the second condenser showed that the most likely polymerization precursors, such as 2-methoxy-phenol, 2-methoxy-4-methyl-phenol, 4-ethyl-2-methoxy-phenol, 2-methoxy-4-vinylphenol, and 2,6-dimethoxyphenol decreased, while monofunctional phenols, ketones, and furans increased compared to that in the noncatalytic experiment. The hydrocarbons increased with the increase of the catalyst percentages, and this contributed to the decrease of the oxygen content of the bio-oil. Multi-stage condensation achieved a good separation of the oil fraction and water.
引用
收藏
页码:6199 / 6206
页数:8
相关论文
共 50 条
  • [31] Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor
    Xue, Yuan
    Zhou, Shuai
    Brown, Robert C.
    Kelkar, Atul
    Bai, Xianglan
    FUEL, 2015, 156 : 40 - 46
  • [32] Fast Pyrolysis of Biomass in Bubbling Fluidized Bed: A Model Study
    Kaushal, Priyanka
    Mirhidi, Seyed Amin
    Abedi, Jalal
    CHEMICAL PRODUCT AND PROCESS MODELING, 2011, 6 (01):
  • [33] Modeling and simulation of biomass fast pyrolysis in a fluidized bed reactor
    Blanco, Adriana
    Chejne, Farid
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2016, 118 : 105 - 114
  • [34] Detailed simulations of fast pyrolysis of biomass in a fluidized bed reactor
    Peng, Jing
    Eri, Qitai
    Zhao, Xinjun
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2018, 10 (01)
  • [35] Computational study of biomass fast pyrolysis in a fluidized bed reactor
    Ahumada, C. D.
    Hinojosa-Palafox, J. F.
    Maytorena, V. M.
    Perez-Rabago, C.
    REVISTA MEXICANA DE INGENIERIA QUIMICA, 2022, 21 (02):
  • [36] Catalytic Cracking of HDPE Pyrolysis Volatiles over a Spent FCC Catalyst
    Barbarias, Itsaso
    Artetxe, Maite
    Arregi, Aitor
    Alvarez, Jon
    Lopez, Gartzen
    Amutio, Maider
    Olazar, Martin
    ICHEAP12: 12TH INTERNATIONAL CONFERENCE ON CHEMICAL & PROCESS ENGINEERING, 2015, 43 : 2029 - 2034
  • [37] Catalytic pyrolysis of coal particles in a fluidized bed: Experiments and modeling
    Esfandiar, Milad
    Nikan, Fatemeh
    Shahnazari, Mohammad Reza
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2017, 39 (14) : 1478 - 1483
  • [38] Catalytic pyrolysis of palm kernel shell waste in a fluidized bed
    Kim, Sung Won
    Koo, Bon Seok
    Lee, Dong Hyun
    BIORESOURCE TECHNOLOGY, 2014, 167 : 425 - 432
  • [39] Catalytic Steam Reforming of Fast Pyrolysis Bio-Oil in Fixed Bed and Fluidized Bed Reactors
    Lan, Ping
    Xu, Qingli
    Zhou, Ming
    Lan, Lihong
    Zhang, Suping
    Yan, Yongjie
    CHEMICAL ENGINEERING & TECHNOLOGY, 2010, 33 (12) : 2021 - 2028
  • [40] Cracking catalysts used as fluidized bed material in the Hamburg pyrolysis process
    Mertinkat, J
    Kirsten, A
    Predel, M
    Kaminsky, W
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 1999, 49 (1-2) : 87 - 95