Sensor and Actuator Placement for Proportional Feedback Control in Advection-Diffusion Equations

被引:5
|
作者
Veldman, D. W. M. [1 ]
Fey, R. H. B. [1 ]
Zwart, H. J. [1 ,2 ]
van de Wal, M. M. J. [3 ]
van den Boom, J. D. B. J. [4 ]
Nijmeijer, H. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
[2] Univ Twente, Fac Elect Engn Math & Comp Sci, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[3] ASML, Res, NL-5504 DR Veldhoven, Netherlands
[4] ASML, Dev & Engn, NL-5504 DR Veldhoven, Netherlands
来源
IEEE CONTROL SYSTEMS LETTERS | 2020年 / 4卷 / 01期
关键词
Distributed parameter systems; control system architecture; PID control;
D O I
10.1109/LCSYS.2019.2921623
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, advection-diffusion equations with constant coefficients on infinite 1-D and 2-D spatial domains are considered. Suitable sensor and/or actuator locations are determined for which high-gain and low-gain proportional feedback can effectively reduce the influence of a disturbance at a point of interest. These locations are characterized by simple analytic expressions which can be used as guidelines for control system design. The obtained analytic expressions are validated by numerical results.
引用
收藏
页码:193 / 198
页数:6
相关论文
共 50 条
  • [21] A Comparison of Closures for Stochastic Advection-Diffusion Equations
    Jarman, K. D.
    Tartakovsky, A. M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2013, 1 (01): : 319 - 347
  • [22] Some Stability Results for Advection-Diffusion Equations
    Howes, F.A.
    Studies in Applied Mathematics, 1986, 74 (01): : 35 - 53
  • [23] Actuator and sensor placement in linear advection PDE
    Vaidya, Umesh
    Rajaram, Rajeev
    Dasgupta, Sambarta
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 5395 - 5400
  • [24] Traveling wave solutions of advection-diffusion equations with nonlinear diffusion
    Monsaingeon, L.
    Novikov, A.
    Roquejoffre, J. -M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (04): : 705 - 735
  • [25] Analytical solutions for advection and advection-diffusion equations with spatially variable coefficients
    Zoppou, C
    Knight, JH
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1997, 123 (02): : 144 - 148
  • [26] Perfectly matched layers for the heat and advection-diffusion equations
    Lantos, Nicolas
    Nataf, Frederic
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (13-14) : 781 - 785
  • [27] A moving mesh mixed method for advection-diffusion equations
    Liu, Y
    Santos, RE
    COMPUTATIONAL METHODS IN ENGINEERING AND SCIENCE, PROCEEDINGS, 2003, : 285 - 292
  • [28] An ELLAM scheme for advection-diffusion equations in two dimensions
    Wang, H
    Dahle, HK
    Ewing, RE
    Espedal, MS
    Sharpley, RC
    Man, SS
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (06): : 2160 - 2194
  • [29] Advection-diffusion equations for generalized tactic searching behaviors
    Grünbaum, D
    JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 38 (02) : 169 - 194
  • [30] Deformation Formulas and Inverse Problems for Advection-diffusion Equations
    Nakagiri, Shin-ichi
    SIMULATION AND MODELING RELATED TO COMPUTATIONAL SCIENCE AND ROBOTICS TECHNOLOGY, 2012, 37 : 61 - 78