Sensor and Actuator Placement for Proportional Feedback Control in Advection-Diffusion Equations

被引:5
|
作者
Veldman, D. W. M. [1 ]
Fey, R. H. B. [1 ]
Zwart, H. J. [1 ,2 ]
van de Wal, M. M. J. [3 ]
van den Boom, J. D. B. J. [4 ]
Nijmeijer, H. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
[2] Univ Twente, Fac Elect Engn Math & Comp Sci, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[3] ASML, Res, NL-5504 DR Veldhoven, Netherlands
[4] ASML, Dev & Engn, NL-5504 DR Veldhoven, Netherlands
来源
IEEE CONTROL SYSTEMS LETTERS | 2020年 / 4卷 / 01期
关键词
Distributed parameter systems; control system architecture; PID control;
D O I
10.1109/LCSYS.2019.2921623
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, advection-diffusion equations with constant coefficients on infinite 1-D and 2-D spatial domains are considered. Suitable sensor and/or actuator locations are determined for which high-gain and low-gain proportional feedback can effectively reduce the influence of a disturbance at a point of interest. These locations are characterized by simple analytic expressions which can be used as guidelines for control system design. The obtained analytic expressions are validated by numerical results.
引用
收藏
页码:193 / 198
页数:6
相关论文
共 50 条
  • [1] Optimal control and numerical adaptivity for advection-diffusion equations
    Dede', L
    Quarteroni, A
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (05): : 1019 - 1040
  • [2] Accurate discretization of advection-diffusion equations
    Grima, R.
    Newman, T.J.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (3 2): : 036703 - 1
  • [3] Nonlocal Nonlinear Advection-Diffusion Equations
    Constantin, Peter
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (01) : 281 - 292
  • [4] Nonlocal nonlinear advection-diffusion equations
    Peter Constantin
    Chinese Annals of Mathematics, Series B, 2017, 38 : 281 - 292
  • [5] ADVECTION-DIFFUSION EQUATIONS WITH DENSITY CONSTRAINTS
    Meszaros, Alpar Richard
    Santambrogio, Filippo
    ANALYSIS & PDE, 2016, 9 (03): : 615 - 644
  • [6] Accurate discretization of advection-diffusion equations
    Grima, R
    Newman, TJ
    PHYSICAL REVIEW E, 2004, 70 (03):
  • [7] Nonlocal Nonlinear Advection-Diffusion Equations
    Peter CONSTANTIN
    Chinese Annals of Mathematics,Series B, 2017, (01) : 281 - 292
  • [8] A multiscale control volume finite element method for advection-diffusion equations
    Bochev, Pavel
    Peterson, Kara
    Perego, Mauro
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 77 (11) : 641 - 667
  • [9] VISCOUS SHOCK MOTION FOR ADVECTION-DIFFUSION EQUATIONS
    LAFORGUE, JGL
    OMALLEY, RE
    STUDIES IN APPLIED MATHEMATICS, 1995, 95 (02) : 147 - 170
  • [10] Optimal control in heterogeneous domain decomposition methods for advection-diffusion equations
    Agoshkov, Valery
    Gervasio, Paola
    Quarteroni, Alfio
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2006, 3 (02) : 147 - 176