EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A HYPERBOLIC KELLER-SEGEL EQUATION

被引:7
|
作者
Fu, Xiaoming [1 ]
Griette, Quentin [1 ]
Magal, Pierre [1 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, 351 Cours Liberat, F-33400 Talence, France
来源
关键词
Cell motion; nonlinear first-order hyperbolic equation; nonlinear diffusion; AGGREGATION MODELS; DIFFUSION; POTENTIALS; DYNAMICS; BEHAVIOR; SYSTEM;
D O I
10.3934/dcdsb.2020326
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we describe a hyperbolic model with cell-cell repulsion with a dynamics in the population of cells. More precisely, we consider a population of cells producing a field (which we call "pressure") which induces a motion of the cells following the opposite of the gradient. The field indicates the local density of population and we assume that cells try to avoid crowded areas and prefer locally empty spaces which are far away from the carrying capacity. We analyze the well-posed property of the associated Cauchy problem on the real line. Moreover we obtain a convergence result for bounded initial distributions which are positive and stay away from zero uniformly on the real line.
引用
收藏
页码:1931 / 1966
页数:36
相关论文
共 50 条
  • [41] Uniqueness of stationary states for singular Keller-Segel type models
    Calvez, Vincent
    Carrillo, Jose Antonio
    Hoffmann, Franca
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 205
  • [42] A SIMPLE PROOF OF NON-EXPLOSION FOR MEASURE SOLUTIONS OF THE KELLER-SEGEL EQUATION
    Fournier, Nicolas
    Tardy, Yoan
    KINETIC AND RELATED MODELS, 2023, 16 (02) : 178 - 186
  • [43] Spatial Analyticity of Solutions to Keller-Segel Equation of Parabolic-Elliptic Type
    Yang Minghua
    Sun, Jinyi
    RESULTS IN MATHEMATICS, 2017, 72 (04) : 1653 - 1681
  • [44] A Note on L∞-Bound and Uniqueness to a Degenerate Keller-Segel Model
    Liu, Jian-Guo
    Wang, Jinhuan
    ACTA APPLICANDAE MATHEMATICAE, 2016, 142 (01) : 173 - 188
  • [45] THE KELLER-SEGEL SYSTEM ON THE TWO-DIMENSIONAL-HYPERBOLIC SPACE
    Maheux, Patrick
    Pierfelice, Vittoria
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (05) : 5036 - 5065
  • [46] Existence of weak and regular solutions for Keller-Segel system with degradation coupled to fluid equations
    Kang, Kyungkeun
    Kim, Kyunghwa
    Yoon, Changwook
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 485 (10)
  • [47] Global existence of solutions for a nonlinearly perturbed Keller-Segel system in R2
    Kurokiba, Masaki
    Ogawa, Takayoshi
    Takahashi, Futoshi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (05): : 840 - 867
  • [48] ASYMPTOTIC BEHAVIORS AND EXISTENCE OF TRAVELING WAVE SOLUTIONS TO THE KELLER-SEGEL MODEL WITH LOGARITHMIC SENSITIVITY
    LI, C. H. E. N.
    Liu, J. I. A. N. G.
    DU, Z. E. N. G. J., I
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (03): : 1771 - 1786
  • [49] Global existence and asymptotic behavior of classical solutions to a fractional logistic Keller-Segel system
    Zhang, Weiyi
    Liu, Zuhan
    Zhou, Ling
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 189
  • [50] Logarithmic scaling of the collapse in the critical Keller-Segel equation
    Dyachenko, Sergey A.
    Lushnikov, Pavel M.
    Vladimirova, Natalia
    NONLINEARITY, 2013, 26 (11) : 3011 - 3041