Multipath Ghost Classification for MIMO Radar Using Deep Neural Networks

被引:0
|
作者
Feng, Ruoyu [1 ,2 ]
De Greef, Eddy [1 ]
Rykunov, Maxim [1 ]
Sahli, Hichem [1 ,3 ]
Pollin, Sofie [1 ,2 ]
Bourdoux, Andre [1 ]
机构
[1] IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
[2] Katholieke Univ Leuven, ESAT, Kasteelpk Arenberg 10, B-3001 Heverlee, Belgium
[3] Vrije Univ Brussel, ETRO, Pl Laan 2, B-1050 Brussels, Belgium
关键词
MIMO radar; multipath; ghost classification; deep neural networks;
D O I
10.1109/RADARCONF2248738.2022.9764274
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multipath is a significant challenge for indoor multiple-input-multiple-output (MIMO) radar applications. It generates the so-called 'ghosts' in the radar detection, which represent the objects that do not exist. Targets and ghosts are very similar, which makes them difficult to be recognized without prior knowledge of the environment geometry. In this work, a multipath model for the indoor scenario is analyzed for a frequency-modulated continuous-wave (FMCW) MIMO radar. Based on the multipath model, spatial signals from the MIMO virtual channels are fed to a deep neural network that is proposed to classify the multipath ghost, combined with a linear pattern recognition algorithm from our previous work. Simulation and experimental results demonstrate the performance of the proposed solution.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Categorical vehicle classification using Deep Neural Networks
    Sharma, Deependra
    Jaffery, Zainul Abdin
    Ahmad, Nadeem
    2019 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, CONTROL AND AUTOMATION (ICPECA-2019), 2019, : 392 - 397
  • [22] Hierarchical Data Classification Using Deep Neural Networks
    Tirumala, Sreenivas Sremath
    Narayanan, A.
    NEURAL INFORMATION PROCESSING, PT I, 2015, 9489 : 492 - 500
  • [23] Classification of ECG heartbeats using deep neural networks
    Harrane S.
    Belkhiri M.
    Research on Biomedical Engineering, 2021, 37 (04) : 737 - 747
  • [24] ARRHYTHMIA CLASSIFICATION USING DEEP RESIDUAL NEURAL NETWORKS
    Shi, Zhenghao
    Yin, Zhiyan
    Ren, Xiaoyong
    Liu, Haiqin
    Chen, Jingguo
    Hei, Xinhong
    Luo, Jing
    You, Zhenzhen
    Zhao, Minghua
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2021, 21 (10)
  • [25] Flower classification using deep convolutional neural networks
    Hiary, Hazem
    Saadeh, Heba
    Saadeh, Maha
    Yaqub, Mohammad
    IET COMPUTER VISION, 2018, 12 (06) : 855 - 862
  • [26] Space Object Classification using Deep Neural Networks
    Jia, Bin
    Pham, Khanh D.
    Blasch, Erik
    Wang, Zhonghai
    Shen, Dan
    Chen, Genshe
    2018 IEEE AEROSPACE CONFERENCE, 2018,
  • [27] Gas Classification Using Deep Convolutional Neural Networks
    Peng, Pai
    Zhao, Xiaojin
    Pan, Xiaofang
    Ye, Wenbin
    SENSORS, 2018, 18 (01)
  • [28] Music Genre Classification using Deep Neural Networks
    Yimer, Mekonen Hiwot
    Yu, Yongbin
    Adu, Kwabena
    Favour, Ekong
    Liyih, Sinishaw Melikamu
    Patamia, Rutherford Agbeshi
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2384 - 2391
  • [29] Audio Event Classification Using Deep Neural Networks
    Kons, Zvi
    Toledo-Ronen, Orith
    14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 1481 - 1485
  • [30] Unmanned Aerial Vehicle Classification Using Neural Neworks and Radar Digital Twins: UAV Classification Using Neural Networks and Radar Digital Twins
    Sayed, Ahmed N.
    Riad, Michael M. Y. R.
    Ansariyan, Ahmad
    Salman, Laila
    Ramahi, Omar M.
    Shaker, George
    IEEE MICROWAVE MAGAZINE, 2024, 25 (11) : 30 - 42