Multipath Ghost Classification for MIMO Radar Using Deep Neural Networks

被引:0
|
作者
Feng, Ruoyu [1 ,2 ]
De Greef, Eddy [1 ]
Rykunov, Maxim [1 ]
Sahli, Hichem [1 ,3 ]
Pollin, Sofie [1 ,2 ]
Bourdoux, Andre [1 ]
机构
[1] IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
[2] Katholieke Univ Leuven, ESAT, Kasteelpk Arenberg 10, B-3001 Heverlee, Belgium
[3] Vrije Univ Brussel, ETRO, Pl Laan 2, B-1050 Brussels, Belgium
关键词
MIMO radar; multipath; ghost classification; deep neural networks;
D O I
10.1109/RADARCONF2248738.2022.9764274
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multipath is a significant challenge for indoor multiple-input-multiple-output (MIMO) radar applications. It generates the so-called 'ghosts' in the radar detection, which represent the objects that do not exist. Targets and ghosts are very similar, which makes them difficult to be recognized without prior knowledge of the environment geometry. In this work, a multipath model for the indoor scenario is analyzed for a frequency-modulated continuous-wave (FMCW) MIMO radar. Based on the multipath model, spatial signals from the MIMO virtual channels are fed to a deep neural network that is proposed to classify the multipath ghost, combined with a linear pattern recognition algorithm from our previous work. Simulation and experimental results demonstrate the performance of the proposed solution.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Multipath Ghost Recognition for Indoor MIMO Radar
    Feng, Ruoyu
    De Greef, Eddy
    Rykunov, Maxim
    Sahli, Hichem
    Pollin, Sofie
    Bourdoux, Andre
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Multipath Ghost Target Identification for Automotive MIMO Radar
    Li, Yunda
    Shang, Xiaolei
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [3] An Effective Multipath Ghost Recognition Method for Sparse MIMO Radar
    Luo, Haolan
    Zhu, Zhihao
    Jiang, Meiqiu
    Guo, Shisheng
    Cui, Guolong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 11
  • [4] MIMO Radar Waveform Design for Multipath Exploitation Using Deep Learning
    Zheng, Zixiang
    Zhang, Yue
    Peng, Xiangyu
    Xie, Hanfeng
    Chen, Jinfan
    Mo, Junxian
    Sui, Yunfeng
    REMOTE SENSING, 2023, 15 (11)
  • [5] Video Deblocking Using Multipath Deep Neural Networks
    Chou, Ping-Peng
    Leou, Jin-Jang
    Communications in Computer and Information Science, 2024, 2075 CCIS : 28 - 39
  • [6] CLASSIFICATION OF RADAR CLUTTER USING NEURAL NETWORKS
    HAYKIN, S
    CONG, D
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (06): : 589 - 600
  • [7] Practical classification of different moving targets using automotive radar and deep neural networks
    Angelov, Aleksandar
    Robertson, Andrew
    Murray-Smith, Roderick
    Fioranelli, Francesco
    IET RADAR SONAR AND NAVIGATION, 2018, 12 (10): : 1082 - 1089
  • [8] Multipath Ghost Recognition and Joint Target Tracking With Wall Estimation for Indoor MIMO Radar
    Feng, Ruoyu
    De Greef, Eddy
    Rykunov, Maxim
    Pollin, Sofie
    Bourdoux, André
    Sahli, Hichem
    IEEE Transactions on Radar Systems, 2024, 2 : 154 - 164
  • [9] CLASSIFICATION OF RADAR TARGETS USING SYNTHETIC NEURAL NETWORKS
    JOUNY, I
    GARBER, FD
    AHALT, SC
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1993, 29 (02) : 336 - 344
  • [10] Robust DOA Estimation Method for MIMO Radar via Deep Neural Networks
    Cong, Jingyu
    Wang, Xianpeng
    Huang, Mengxing
    Wan, Liangtian
    IEEE SENSORS JOURNAL, 2021, 21 (06) : 7498 - 7507