Perturbative approach to non-Markovian stochastic Schrodinger equations

被引:31
|
作者
Gambetta, J [1 ]
Wiseman, HM [1 ]
机构
[1] Griffith Univ, Sch Sci, Ctr Quantum Dynam, Brisbane, Qld 4111, Australia
来源
PHYSICAL REVIEW A | 2002年 / 66卷 / 05期
关键词
D O I
10.1103/PhysRevA.66.052105
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we present a perturbative procedure that allows one to numerically solve diffusive non-Markovian stochastic Schrodinger equations, for a wide range of memory functions. To illustrate this procedure numerical results are presented for a classically driven two-level atom immersed in an environment with a simple memory function. It is observed that as the order of the perturbation is increased the numerical results for the ensemble average state rho(red)(t) approach the exact reduced state found via Imamoglu(')s enlarged system method [Phys. Rev. A 50, 3650 (1994)].
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Numerical solutions for non-Markovian stochastic equations of motion
    Farias, R. L. S.
    Ramos, Rudnei O.
    da Silva, L. A.
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (04) : 574 - 579
  • [22] A tomographic approach to non-Markovian master equations
    Bellomo, Bruno
    De Pasquale, Antonella
    Gualdi, Giulia
    Marzolino, Ugo
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (39)
  • [23] Markovian Embeddings of Non-Markovian Quantum Systems: Coupled Stochastic and Quantum Master Equations for Non-Markovian Quantum Systems
    Nurdin, Hendra I.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 5939 - 5944
  • [24] Non-Markovian stochastic Schrodinger equations in different temperature regimes: A study of the spin-boson model
    de Vega, I
    Alonso, D
    Gaspard, P
    Strunz, WT
    JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (12):
  • [25] Non-Markovian generalization of a stochastic Schrodinger equation for two interacting qubits
    Semin, Vitalii
    EPL, 2020, 130 (01)
  • [26] Non-Markovian fermionic stochastic Schrodinger equation for open system dynamics
    Shi, Wufu
    Zhao, Xinyu
    Yu, Ting
    PHYSICAL REVIEW A, 2013, 87 (05):
  • [27] DYNAMICAL PROPERTIES OF NON-MARKOVIAN STOCHASTIC DIFFERENTIAL-EQUATIONS
    HERNANDEZMACHADO, A
    SANMIGUEL, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (04) : 1066 - 1075
  • [28] STOCHASTIC INTERPRETATION OF MODEL NON-MARKOVIAN KINETIC-EQUATIONS
    MOFFAT, MJ
    PHYSICA, 1974, 74 (02): : 355 - 368
  • [29] Non-Markovian stochastic processes
    Gillespie, DT
    UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS, 2000, 511 : 49 - 56
  • [30] Non-Markovian stochastic Schrodinger equation: Matrix-product-state approach to the hierarchy of pure states
    Gao, Xing
    Ren, Jiajun
    Eisfeld, Alexander
    Shuai, Zhigang
    PHYSICAL REVIEW A, 2022, 105 (03)