k-SAT Is No Harder Than Decision-Unique-k-SAT

被引:0
|
作者
Calabro, Chris [1 ]
Paturi, Ramamohan [1 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
关键词
k-SAT; unique satisfiability; exponential complexity; quantified Boolean formulas; hitting set; independent set; COMPLEXITY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We resolve an open question by [3]: the exponential complexity of deciding whether a k-CNF has a solution is the same as that; of deciding whether it has exactly one solution, both when it, is promised and when it is not; promised that the input formula has a solution. We also show that this has the same exponential complexity as deciding whether a given variable is backbone (i.e. forced to a particular value), given the promise that, there is a solution. We show similar results for True Quantified Boolean Formulas in k-CNF, k-Hitting Set (and therefore Vertex Cover), k-Hypergraph Independent, Set (and therefore Independent Set), Max-k-SAT, Min-k-SAT, and 0-1 Integer Programming with inequalities and k-wide constraints.
引用
收藏
页码:59 / 70
页数:12
相关论文
共 50 条
  • [21] Analysis of backtracking of random k-SAT
    Xu, Ke
    Li, Wei
    Jisuanji Xuebao/Chinese Journal of Computers, 2000, 23 (05): : 454 - 458
  • [22] A Better Algorithm for Random k-SAT
    Coja-Oghlan, Amin
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2009, 5555 : 292 - 303
  • [23] The K-SAT Problem in a Simple Limit
    Luca Leuzzi
    Giorgio Parisi
    Journal of Statistical Physics, 2001, 103 : 679 - 695
  • [24] A BETTER ALGORITHM FOR RANDOM k-SAT
    Coja-Oghlan, Amin
    SIAM JOURNAL ON COMPUTING, 2010, 39 (07) : 2823 - 2864
  • [25] Weak lumpability in the k-SAT problem
    Grinfeld, M
    Knight, PA
    APPLIED MATHEMATICS LETTERS, 2000, 13 (06) : 49 - 53
  • [26] The K-SAT problem in a simple limit
    Leuzzi, L
    Parisi, G
    JOURNAL OF STATISTICAL PHYSICS, 2001, 103 (5-6) : 679 - 695
  • [27] Going After the k-SAT Threshold
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2013, : 705 - 714
  • [28] On the critical exponents of random k-SAT
    Wilson, DB
    RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (02) : 182 - 195
  • [29] A Note on Random k-SAT for Moderately Growing k
    Liu, Jun
    Gao, Zongsheng
    Xu, Ke
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [30] A novel weighting scheme for random k-SAT关于随机 k-SAT 的新加权方法
    Jun Liu
    Ke Xu
    Science China Information Sciences, 2016, 59