A Generative Adversarial Networks for Log Anomaly Detection

被引:14
|
作者
Duan, Xiaoyu [1 ]
Ying, Shi [1 ]
Yuan, Wanli [1 ]
Cheng, Hailong [1 ]
Yin, Xiang [2 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[2] Chinese Acad Sci, Inst Informat Engn, Beijing 100093, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Generative adversarial networks; anomaly detection; data mining; deep learning; IMAGE; PREDICTION;
D O I
10.32604/csse.2021.014030
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Detecting anomaly logs is a great significance step for guarding system faults. Due to the uncertainty of abnormal log types, lack of real anomaly logs and accurately labeled log datasets. Existing technologies cannot be enough for detecting complex and various log point anomalies by using human-defined rules. We propose a log anomaly detection method based on Generative Adversarial Networks (GAN). This method uses the Encoder-Decoder framework based on Long Short-Term Memory (LSTM) network as the generator, takes the log keywords as the input of the encoder, and the decoder outputs the generated log template. The discriminator uses the Convolutional Neural Networks (CNN) to identify the difference between the generated log template and the real log template. The model parameters are optimized automatically by iteration. In the stage of anomaly detection, the probability of anomaly is calculated by the Euclidean distance. Experiments on real data show that this method can detect log point anomalies with an average precision of 95%. Besides, it outperforms other existing log-based anomaly detection methods.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 50 条
  • [21] Unsupervised anomaly detection for underwater gliders using generative adversarial networks
    Wu, Peng
    Harris, Catherine A.
    Salavasidis, Georgios
    Lorenzo-Lopez, Alvaro
    Kamarudzaman, Izzat
    Phillips, Alexander B.
    Thomas, Giles
    Anderlini, Enrico
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 104
  • [22] Generative Adversarial Networks for Robust Anomaly Detection in Noisy IoT Environments
    Abusitta, Adel
    Halabi, Talal
    Bataineh, Ahmed Saleh
    Zulkernine, Mohammad
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 4644 - 4649
  • [23] TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks
    Geiger, Alexander
    Liu, Dongyu
    Alnegheimish, Sarah
    Cuesta-Infante, Alfredo
    Veeramachaneni, Kalyan
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 33 - 43
  • [24] Least Squares Generative Adversarial Networks-Based Anomaly Detection
    Lee, Chang-Ki
    Cheon, Yu-Jeong
    Hwang, Wook-Yeon
    IEEE ACCESS, 2022, 10 : 26920 - 26930
  • [25] Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
    Schlegl, Thomas
    Seeboeck, Philipp
    Waldstein, Sebastian M.
    Schmidt-Erfurth, Ursula
    Langs, Georg
    INFORMATION PROCESSING IN MEDICAL IMAGING (IPMI 2017), 2017, 10265 : 146 - 157
  • [26] Applying of Generative Adversarial Networks for Anomaly Detection in Industrial Control Systems
    Alabugin, Sergei K.
    Sokolov, Alexander N.
    2020 GLOBAL SMART INDUSTRY CONFERENCE (GLOSIC), 2020, : 199 - 203
  • [27] Anomaly detection in milling tools using acoustic signals and generative adversarial networks
    Cooper, Clayton
    Zhang, Jianjing
    Gao, Robert X.
    Wang, Peng
    Ragai, Ihab
    48TH SME NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE, NAMRC 48, 2020, 48 : 372 - 378
  • [28] f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks
    Schlegl, Thomas
    Seebock, Philipp
    Waldstein, Sebastian M.
    Langs, Georg
    Schmidt-Erfurth, Ursula
    MEDICAL IMAGE ANALYSIS, 2019, 54 : 30 - 44
  • [29] Plant Biopotential Sensing Based on Generative Adversarial Networks for Environmental Anomaly Detection
    Zhao, Hanqing
    Nambo, Hidetaka
    IEEE SENSORS JOURNAL, 2023, 23 (23) : 29793 - 29803
  • [30] Future of generative adversarial networks (GAN) for anomaly detection in network security: A review
    Lim, Willone
    Yong, Kelvin Sheng Chek
    Lau, Bee Theng
    Tan, Colin Choon Lin
    COMPUTERS & SECURITY, 2024, 139