Probabilistic Electromechanical Modeling of Nanostructures with Random Geometry

被引:3
|
作者
Arnst, M. [1 ]
Ghanem, R. [1 ]
机构
[1] Univ So Calif, Los Angeles, CA 90089 USA
关键词
Uncertainty Quantification; Nanoelectromechanical System; Stochastic Finite Element Method; Geometrical Uncertainty; Polynomial Chaos; LAGRANGIAN APPROACH; EQUATIONS;
D O I
10.1166/jctn.2009.1283
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article is concerned with the probabilistic modeling of the electromechanical behavior of nanostructures to assess the effect of variations in geometrical characteristics on the device performance. The topological uncertainty that may be present in the position of the boundaries of nanostructures is accommodated by treating these boundaries as stochastic processes. It is shown how the probabilistic electromechanical models thus obtained can be discretized with the help of Galerkin projections on polynomial chaos expansions. An illustration is provided to demonstrate the proposed framework.
引用
收藏
页码:2256 / 2272
页数:17
相关论文
共 50 条
  • [21] Synthesis, electromechanical characterization, and applications of graphene nanostructures
    Dumitrica, Traian
    Kodambaka, Suneel
    Jun, Sukky
    JOURNAL OF NANOPHOTONICS, 2012, 6
  • [22] Probabilistic modeling of shallow landslide initiation using regional scale random fields
    Lizarraga, Jose J.
    Buscarnera, Giuseppe
    LANDSLIDES, 2020, 17 (08) : 1979 - 1988
  • [23] Geometry of nanostructures and eigenvectors of matrices
    Laszlo, Istvan
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2013, 250 (12): : 2732 - 2736
  • [24] Probabilistic modeling of fatigue life distribution and size effect of components with random defects
    Ai, Y.
    Zhu, S. P.
    Liao, D.
    Correia, J. A. F. O.
    Souto, C.
    De Jesus, A. M. P.
    Keshtegar, B.
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 126 : 165 - 173
  • [25] LIMIT LAWS FOR A STOCHASTIC-PROCESS AND RANDOM RECURSION ARISING IN PROBABILISTIC MODELING
    RACHEV, ST
    SAMORODNITSKY, G
    ADVANCES IN APPLIED PROBABILITY, 1995, 27 (01) : 185 - 202
  • [26] A probabilistic learning algorithm for robust modeling using neural networks with random weights
    Cao, Feilong
    Ye, Hailiang
    Wang, Dianhui
    INFORMATION SCIENCES, 2015, 313 : 62 - 78
  • [27] Probabilistic modeling of shallow landslide initiation using regional scale random fields
    José J. Lizárraga
    Giuseppe Buscarnera
    Landslides, 2020, 17 : 1979 - 1988
  • [28] Electromechanical Coupling Dynamics Modeling and Analysis of Superconducting Electrodynamic Suspension Train Under Random Irregularities
    Huang, Huan
    Zhu, Hanlin
    Li, Haitao
    Wang, Li
    Xu, Yan
    Lin, Guobin
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2025, 35 (05)
  • [29] Data Clustering in Urban Computational Modeling by Integrated Geometry and Imagery Features for Probabilistic Navigation
    Cai, Chenyi
    Zaghloul, Mohamed
    Li, Biao
    APPLIED SCIENCES-BASEL, 2022, 12 (24):
  • [30] A probabilistic crystal plasticity model for modeling grain shape effects based on slip geometry
    Sun, Shang
    Sundararaghavan, Veera
    ACTA MATERIALIA, 2012, 60 (13-14) : 5233 - 5244