Generalized eigenvalues of a definite Hermitian matrix pair

被引:0
|
作者
Li, CK
Mathias, R
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we study some basic properties of generalized eigenvalues of a definite Hermitian matrix pair. In particular, we prove an interlacing theorem and a minimax theorem. We also obtain upper bounds for the variation of the generalized eigenvalues under perturbation. These results extend and improve those of R.-C. Li, J.-g. Sun, and G.W. Stewart on the topic. (C) 1998 Elsevier Science Inc.
引用
收藏
页码:309 / 321
页数:13
相关论文
共 50 条
  • [31] 2 SIMPLE RESIDUAL BOUNDS FOR THE EIGENVALUES OF A HERMITIAN MATRIX
    STEWART, GW
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1991, 12 (02) : 205 - 208
  • [32] On the multiplicities of eigenvalues of a Hermitian matrix whose graph is a tree
    Da Fonseca, C. M.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (02) : 251 - 261
  • [33] A method for separating nearly multiple eigenvalues for Hermitian matrix
    Toyonaga, K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 199 (02) : 432 - 436
  • [34] Relative residual bounds for the eigenvalues of a Hermitian semidefinite matrix
    Drmac, Z
    Hari, V
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (01) : 21 - 29
  • [35] On the Hermitian structures of the solution to a pair of matrix equations
    Wang, Qing-Wen
    Zhang, Xiang
    He, Zhuo-Heng
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (01): : 73 - 90
  • [36] The Hermitian Positive Definite Solution of Matrix Equations and Its Application
    Li, Hongkui
    Song, Daojin
    2009 ASIA-PACIFIC CONFERENCE ON INFORMATION PROCESSING (APCIP 2009), VOL 2, PROCEEDINGS, 2009, : 340 - +
  • [37] Generalized matrix functions and Hermitian matrices
    Jafari, Mohammad Hossein
    Madadi, Ali Reza
    RICERCHE DI MATEMATICA, 2024,
  • [38] On Hermitian Positive Definite Solutions of a Type of Nonlinear Matrix Equations
    Li, Hongkui
    Liu, Xueting
    2009 ISECS INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT, VOL III, 2009, : 320 - +
  • [39] Some inequalities for generalized eigenvalues of perturbation problems on Hermitian matrices
    Yan Hong
    Dongkyu Lim
    Feng Qi
    Journal of Inequalities and Applications, 2018
  • [40] Some inequalities for generalized eigenvalues of perturbation problems on Hermitian matrices
    Hong, Yan
    Lim, Dongkyu
    Qi, Feng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,