Nonlinear Model Predictive Glycemic Control of Critically Ill Patients Using Online Identification of Insulin Sensitivity

被引:0
|
作者
Wu, Sha [1 ]
Furutani, Eiko [1 ]
机构
[1] Kyoto Univ, Grad Sch Engn, Dept Elect Engn, Kyoto 6158510, Japan
来源
2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2016年
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In critically ill patients suffering from hyperglycemia, it has been recently shown that mortality and morbidity can be reduced by keeping blood glucose within the range of 80-110 mg/dL. However, maintaining glycemia within such range is difficult due to the time variability in insulin sensitivity in critically ill patients. In this paper, we propose a novel glycometabolism model of critically ill patients with an insulin sensitivity parameter and develop a nonlinear model predictive glycemic control system with online identification of insulin sensitivity at one-hour intervals. Simulation results show that our system keeps 70% of BG measurements within the range of 80-110 mg/dL without any severe hypoglycemic incidents, which indicates the effectiveness and safety of our system.
引用
收藏
页码:2245 / 2248
页数:4
相关论文
共 50 条
  • [31] Glycemic control in critically ill surgical patients: risks and benefits
    Mukherjee, Kaushik
    Albaugh, Vance L.
    Richards, Justin E.
    Rumbaugh, Kelli A.
    May, Addison K.
    OPEN ACCESS SURGERY, 2015, 8 : 27 - 42
  • [32] Glycemic control in non-diabetic critically ill patients
    Farrokhi, Farnoosh
    Smiley, Dawn
    Umpierrez, Guillermo E.
    BEST PRACTICE & RESEARCH CLINICAL ENDOCRINOLOGY & METABOLISM, 2011, 25 (05) : 813 - 824
  • [33] Early Glycemic Control in Critically Ill Patients With Burn Injury
    Murphy, Claire V.
    Coffey, Rebecca
    Cook, Charles H.
    Gerlach, Anthony T.
    Miller, Sidney F.
    JOURNAL OF BURN CARE & RESEARCH, 2011, 32 (06): : 583 - 590
  • [34] Computer protocols for tight glycemic control in critically ill patients
    Kalfon, Pierre
    NUTRITION CLINIQUE ET METABOLISME, 2010, 24 (02): : 57 - 62
  • [35] Evaluation of a Model for Glycemic Prediction in Critically Ill Surgical Patients
    Pappada, Scott M.
    Cameron, Brent D.
    Tulman, David B.
    Bourey, Raymond E.
    Borst, Marilyn J.
    Olorunto, William
    Bergese, Sergio D.
    Evans, David C.
    Stawicki, Stanislaw P. A.
    Papadimos, Thomas J.
    PLOS ONE, 2013, 8 (07):
  • [36] Closed-Loop Glycemic Control for Critically Ill Subjects Based on Data-Driven Model Predictive Control
    Jiang, Xu
    Wang, Youqing
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 7061 - 7066
  • [37] Model Predictive Control with Online Nonlinear Parameter Identification for a Robotic System
    Runge, Margareta
    Flasskamp, Kathrin
    Bueskens, Christof
    2020 7TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'20), VOL 1, 2020, : 312 - 318
  • [38] Outcome benefit of intensive insulin therapy in the critically ill: Insulin dose versus glycemic control
    Van den Berghe, G
    Wouters, PJ
    Bouillon, R
    Weekers, F
    Verwaest, C
    Schetz, M
    Vlasselaers, D
    Ferdinande, P
    Lamers, P
    CRITICAL CARE MEDICINE, 2003, 31 (02) : 359 - 366
  • [39] A novel, model-based insulin and nutrition delivery controller for glycemic regulation in critically ill patients
    Wong, X. W.
    Singh-Levett, I.
    Hollingsworth, L. J.
    Shaw, G. M.
    Hann, C. E.
    Lotz, T.
    Lin, J.
    Wong, O. S. W.
    Chase, J. G.
    DIABETES TECHNOLOGY & THERAPEUTICS, 2006, 8 (02) : 174 - 190
  • [40] Glucose control by insulin for critically ill surgical patients
    Khoury, W
    Klausner, JM
    Ben-Abraham, R
    Szold, O
    JOURNAL OF TRAUMA-INJURY INFECTION AND CRITICAL CARE, 2004, 57 (05): : 1132 - 1138