On recyclability of thermoplastic ABS polymer as fused filament for FDM technique of additive manufacturing

被引:6
|
作者
Chawla, Kapil [1 ]
Singh, Rupinder [2 ]
Singh, Jaspreet [1 ]
机构
[1] Lovely Profess Univ, Sch Mech Engn, Phagwara, India
[2] Natl Inst Tech Teachers Training & Res Chandigarh, Mech Engn Dept, Chandigarh, India
关键词
Additive manufacturing; Acrylonitrile butadiene styrene; Melt flow index; Fused deposition modeling; Twin-screw extruder; MECHANICAL-PROPERTIES; FIBER; PARTS;
D O I
10.1108/WJE-11-2020-0580
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose The thermoplastic polymers do not decompose easily due to the presence of long-chain stable polymeric structure, and thus, causes serious effects on the environment. Recycling of these polymer wastes becomes the only solution to minimize their adverse effects on the environment. The purpose of this study was to explore the feasibility of using recycled thermoplastic material as filament for fused deposition modeling technique. Design/methodology/approach In this study, the researchers fabricated fused filaments (in-house) for fused deposition modeling (FDM) technique of additive manufacturing from secondary recycled acrylonitrile butadiene styrene (ABS) by using a twin-screw extruder. After measuring the melt flow index of the secondary recycled ABS, the twin-screw extrusion parameters (rpm/speed of the screw, extrusion temperature and load) were varied to predict their influence on the various properties (rheological/mechanical/thermal) of the fabricated filaments. Experimental work was executed as per Taguchi's L9 orthogonal array. Findings Thermal analysis performed to estimate the heat carrying capacity of recycled ABS highlighted that the heat capacity of ABS increases significantly from 0.28 J/g to 3.94 J/g during the heating cycle. The maximum value of peak strength and percentage break elongation for the fused filaments was investigated at 12.5 kg load, 2,250 C extrusion temperature and 70 rpm speed. Originality/value The filaments fabricated by recycling the polymeric waste has been successfully used in the FDM machine for the preparation of the three-dimensional printed tensile specimen.
引用
收藏
页码:352 / 360
页数:9
相关论文
共 50 条
  • [41] FUSED FILAMENT ADDITIVE MANUFACTURING OF IONIC POLYMER-METAL COMPOSITE SOFT ACTIVE 3D STRUCTURES
    Carrico, James D.
    Traeden, Nicklaus W.
    Aureli, Matteo
    Leang, Kam K.
    ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, 2015, VOL 1, 2016,
  • [42] Advancing the additive manufacturing of PLA-ZnO nanocomposites by fused filament fabrication
    Chong, Wei Juene
    Simunec, Dejana Pejak
    Trinchi, Adrian
    Kyratzis, Ilias
    Li, Yuncang
    Wright, Paul
    Shen, Shirley
    Sola, Antonella
    Wen, Cuie
    VIRTUAL AND PHYSICAL PROTOTYPING, 2024, 19 (01)
  • [43] Modeling the strength of laminated parts made by fused filament fabrication additive manufacturing
    Avalle, Massimiliano
    Monti, Margherita
    Frascio, Mattia
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2023,
  • [44] Fused Filament Fabrication (FFF) Additive Manufacturing of Bronze-Based Materials
    Restrepo, Simon
    Jaramillo, Jaime
    Colorado, Henry A.
    TMS 2024 153RD ANNUAL MEETING & EXHIBITION: SUPPLEMENTAL PROCEEDINGS, 2024, : 105 - 112
  • [45] Fused Filament Fabrication-Based Additive Manufacturing of Commercially Pure Titanium
    Thompson, Yvonne
    Polzer, Markus
    Gonzalez-Gutierrez, Joamin
    Kasian, Olga
    Heckl, Johannes P.
    Dalbauer, Valentin
    Kukla, Christian
    Felfer, Peter J.
    ADVANCED ENGINEERING MATERIALS, 2021, 23 (12)
  • [46] Nondestructive evaluation method for standardization of fused filament fabrication based additive manufacturing
    Na, Jeong K.
    Oneida, Erin K.
    ADDITIVE MANUFACTURING, 2018, 24 : 154 - 165
  • [47] Fused filament fabrication for one shot additive manufacturing of capacitive force sensors
    Stano, Gianni
    Bottiglione, Francesco
    Percoco, Gianluca
    V CIRP CONFERENCE ON BIOMANUFACTURING, 2022, 110 : 168 - 173
  • [48] A novel method of creating thermoplastic chitosan blends to produce cell scaffolds by FDM additive manufacturing
    Tylingo, Robert
    Kempa, Piotr
    Banach-Kopec, Adrianna
    Mania, Szymon
    CARBOHYDRATE POLYMERS, 2022, 280
  • [49] EFFECTS OF PROCESS VARIABLES ON EXTRUSION OF CARBON FIBER REINFORCED ABS FILAMENT FOR ADDITIVE MANUFACTURING
    Hull, Emmett
    Grove, Weston
    Zhang, Meng
    Song, Xiaoxu
    Pei, Z. J.
    Cong, Weilong
    PROCEEDINGS OF THE ASME 10TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2015, VOL 1, 2015,
  • [50] Novel polymer materials systems to expand the capabilities of FDM™-type additive manufacturing
    Truman J. Word
    Ariana Guerrero
    D. A. Roberson
    MRS Communications, 2021, 11 : 129 - 145