Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging

被引:76
|
作者
Schmidt, Paul [1 ,2 ]
Pongratz, Viola [1 ,2 ]
Kuester, Pascal [3 ,4 ]
Meier, Dominik [3 ]
Wuerfel, Jens [3 ,4 ]
Lukas, Carsten [5 ]
Bellenberg, Barbara [5 ]
Zipp, Frauke [6 ,7 ]
Groppa, Sergiu [6 ,7 ]
Saemann, Philipp G. [8 ]
Weber, Frank [8 ,9 ]
Gaser, Christian [10 ,11 ]
Franke, Thomas [12 ]
Bussas, Matthias [1 ,2 ]
Kirschke, Jan [13 ]
Zimmer, Claus [13 ]
Hemmer, Bernhard [1 ,14 ]
Muehlau, Mark [1 ,2 ]
机构
[1] Tech Univ Munich, Neurol, Ismaninger Str 22, D-81541 Munich, Germany
[2] Tech Univ Munich, Neuroimaging Ctr, Ismaninger Str 22, D-81541 Munich, Germany
[3] MIAC AG, Med Image Anal Ctr, Mittlere Str 83, CH-4031 Basel, Switzerland
[4] Univ Basel, Biomed Engn, Basel, Switzerland
[5] Ruhr Univ Bochum, St Josef Hosp, Diagnost & Intervent Radiol, Gudrunstr 56, D-44791 Bochum, Germany
[6] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Neurol, Langenbeckstr 1, D-55131 Mainz, Germany
[7] Neuroimaging Ctr Focus Program Translat Neurosci, FTN NIC, Langenbeckstr 1, D-55131 Mainz, Germany
[8] Max Planck Inst Psychiat, Kraepelinstr 2-10, D-80804 Munich, Germany
[9] Sana Kliniken Landkreises Cham, Neurol, August Holz Str 1, D-93413 Cham, Germany
[10] Jena Univ Hosp, Dept Psychiat, Jena, Germany
[11] Jena Univ Hosp, Dept Neurol, Jena, Germany
[12] Univ Med Ctr Gottingen, Med Informat, Gottingen, Germany
[13] Tech Univ Munich, Neuroradiol, Ismaninger Str 22, D-81541 Munich, Germany
[14] Munich Cluster Syst Neurol SyNergy, Feodor Lynen Str 17, D-81377 Munich, Germany
关键词
Magnetic resonance imaging; Multiple sclerosis; White matter lesions; Lesion segmentation; BRAIN MRI; SUBTRACTION; ATROPHY; IMPACT; GRAY;
D O I
10.1016/j.nicl.2019.101849
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Longitudinal analysis of white matter lesion changes on serial MRI has become an important parameter to study diseases with white-matter lesions. Here, we build on earlier work on cross-sectional lesion segmentation; we present a fully automatic pipeline for serial analysis of FLAIR-hyperintense white matter lesions. Our algorithm requires three-dimensional gradient echo T1- and FLAIR- weighted images at 3 Tesla as well as available cross-sectional lesion segmentations of both time points. Preprocessing steps include lesion filling and intrasubject registration. For segmentation of lesion changes, initial lesion maps of different time points are fused; herein changes in intensity are analyzed at the voxel level. Significance of lesion change is estimated by comparison with the difference distribution of FLAIR intensities within normal appearing white matter. The method is validated on MRI data of two time points from 40 subjects with multiple sclerosis derived from two different scanners (20 subjects per scanner). Manual segmentation of lesion increases served as gold standard. Across all lesion increases, voxel-wise Dice coefficient (0.7) as well as lesion-wise detection rate (0.8) and false-discovery rate (0.2) indicate good overall performance. Analysis of scans from a repositioning experiment in a single patient with multiple sclerosis did not yield a single false positive lesion. We also introduce the lesion change plot as a descriptive tool for the lesion change of individual patients with regard to both number and volume. An open source implementation of the algorithm is available at http//www.satastical-modeling.de/lst.html.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Automatic segmentation of white matter and detection of active lesions in multiple sclerosis
    Afzal, H. M. R.
    Luo, S.
    Ramadan, S.
    Lechner-Scott, J.
    MULTIPLE SCLEROSIS JOURNAL, 2018, 24 : 180 - 180
  • [32] A method for segmentation of multiple sclerosis lesions on magnetic resonance images
    Storelli, L.
    Rocca, M. A.
    Preziosa, P.
    Pagani, E.
    Filippi, M.
    MULTIPLE SCLEROSIS JOURNAL, 2015, 21 : 193 - 193
  • [33] Magnetic resonance imaging of multiple sclerosis lesions.
    Berry, I
    Ranjeva, JP
    Manelfe, C
    Clanet, M
    REVUE NEUROLOGIQUE, 1998, 154 (8-9) : 607 - 617
  • [34] Automatic segmentation of white matter lesions in T2 FLAIR MRI of relapsing-remitting multiple sclerosis patients
    Dugas-Phocion, G
    Ballester, MAG
    Lebrun, C
    Chanalet, S
    Bensa, C
    Chatel, M
    Ayache, N
    Malandain, G
    MULTIPLE SCLEROSIS, 2004, 10 (7032): : S233 - S233
  • [36] White matter lesions, quantitative magnetic resonance imaging, and dementia
    Bigler, ED
    Kerr, B
    Victoroff, T
    Tate, DF
    Breitner, JCS
    ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 2002, 16 (03): : 161 - 170
  • [37] Metabolic changes in normal appearing white matter in multiple sclerosis patients using multivoxel magnetic resonance spectroscopy imaging
    Sun, Jubao
    Song, Hao
    Yang, Yong
    Zhang, Kun
    Gao, Xiuju
    Li, XiaoPan
    Ni, Li
    Lin, Pan
    Niu, Chen
    MEDICINE, 2017, 96 (14)
  • [38] Automated White Matter Lesions Segmentation of MRIs for Multiple Sclerosis Detection Using Fuzzy-Entropy Algorithm
    Muchahari, Monoj Kumar
    Singh, Pritpal
    Das, Shirsendu
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2024,
  • [39] Progressive change in primary progressive multiple sclerosis normal-appearing white matter:: a serial diffusion magnetic resonance imaging study
    Schmierer, K
    Altmann, DR
    Kassim, N
    Kitzler, H
    Kerskens, CM
    Doege, CA
    Aktas, O
    Lünemann, JD
    Miller, DH
    Zipp, F
    Villringer, A
    MULTIPLE SCLEROSIS JOURNAL, 2004, 10 (02) : 182 - 187
  • [40] White matter lesions in phenylketonuria: Evaluation with magnetic resonance Imaging and magnetic resonance spectroscopy
    Scarabino, T
    Bertolino, A
    Burroni, M
    Popolizio, T
    Duyn, J
    Weinberger, DR
    Salvolini, U
    RIVISTA DI NEURORADIOLOGIA, 2003, 16 (02): : 251 - 261