Diagnostic value of cerebrospinal fluid Aβ ratios in preclinical Alzheimer's disease

被引:45
|
作者
Adamczuk, Katarzyna [1 ,2 ]
Schaeverbeke, Jolien [1 ,2 ]
Vanderstichele, Hugo M. J. [3 ]
Lilja, Johan [4 ,5 ]
Nelissen, Natalie [1 ,6 ]
Van Laere, Koen [2 ,7 ,8 ]
Dupont, Patrick [1 ,2 ]
Hilven, Kelly [9 ]
Poesen, Koen [10 ,11 ]
Vandenberghe, Rik [1 ,2 ,12 ]
机构
[1] Katholieke Univ Leuven, Lab Cognit Neurol, B-3000 Louvain, Belgium
[2] Katholieke Univ Leuven, Leuven Inst Neurosci & Dis, Alzheimer Res Ctr, B-3000 Louvain, Belgium
[3] ADx NeuroSci, B-9052 Ghent, Belgium
[4] GE Healthcare, S-75125 Uppsala, Sweden
[5] Uppsala Univ, Dept Surg Sci, Nucl Med & PET, S-75185 Uppsala, Sweden
[6] Univ Oxford, Dept Psychiat, Oxford OX3 7JX, England
[7] Katholieke Univ Leuven, Nucl Med & Mol Imaging Dept, B-3000 Louvain, Belgium
[8] Katholieke Univ Leuven Hosp, B-3000 Louvain, Belgium
[9] Katholieke Univ Leuven, Lab Neuroimmunol, B-3000 Louvain, Belgium
[10] Katholieke Univ Leuven, Lab Mol Neurobiomarker Res, B-3000 Louvain, Belgium
[11] UZ Leuven, Lab Med, B-3000 Louvain, Belgium
[12] Univ Hosp Leuven, Dept Neurol, B-3000 Louvain, Belgium
关键词
MEMORY COMPLAINTS; AMYLOID-BETA; CLINICAL-PRACTICE; DEMENTIA; F-18-FLUTEMETAMOL; CSF; VALIDATION; NEURODEGENERATION; PREVALENCE; DEPOSITION;
D O I
10.1186/s13195-015-0159-5
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction: In this study of preclinical Alzheimer's disease (AD) we assessed the added diagnostic value of using cerebrospinal fluid (CSF) A beta ratios rather than A beta 42 in isolation for detecting individuals who are positive on amyloid positron emission tomography (PET). Methods: Thirty-eight community-recruited cognitively intact older adults (mean age 73, range 65-80 years) underwent F-18-flutemetamol PET and CSF measurement of A beta 1-42, A beta 1-40, A beta 1-38, and total tau (ttau). F-18-flutemetamol retention was quantified using standardized uptake value ratios in a composite cortical region (SUVRcomp) with reference to cerebellar grey matter. Based on a prior autopsy validation study, the SUVRcomp cut-off was 1.57. Sensitivities, specificities and cut-offs were defined based on receiver operating characteristic analysis with CSF analytes as variables of interest and F-18-flutemetamol positivity as the classifier. We also determined sensitivities and CSF cut-off values at fixed specificities of 90 % and 95 %. Results: Seven out of 38 subjects (18 %) were positive on amyloid PET. A beta 42/ttau, A beta 42/A beta 40, A beta 42/A beta 38, and A beta 42 had the highest accuracy to identify amyloid-positive subjects (area under the curve (AUC) >= 0.908). A beta 40 and A beta 38 had significantly lower discriminative power (AUC = 0.571). When specificity was fixed at 90 % and 95 %, A beta 42/ttau had the highest sensitivity among the different CSF markers (85.71 % and 71.43 %, respectively). Sensitivity of A beta 42 alone was significantly lower under these conditions (57.14 % and 42.86 %, respectively). Conclusion: For the CSF-based definition of preclinical AD, if a high specificity is required, our data support the use of A beta 42/ttau rather than using A beta 42 in isolation.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Preclinical Cerebrospinal Fluid and Volumetric Magnetic Resonance Imaging Biomarkers in Swedish Familial Alzheimer's Disease
    Thordardottir, Steinunn
    Stahlbom, Anne Kinhult
    Ferreira, Daniel
    Almkvist, Ove
    Westman, Eric
    Zetterberg, Henrik
    Eriksdotter, Maria
    Blennow, Kaj
    Graff, Caroline
    JOURNAL OF ALZHEIMERS DISEASE, 2015, 43 (04) : 1393 - 1402
  • [42] Relationship of cognitive reserve and cerebrospinal fluid biomarkers to the emergence of clinical symptoms in preclinical Alzheimer's disease
    Soldan, Anja
    Pettigrew, Corinne
    Li, Shanshan
    Wang, Mei-Cheng
    Moghekar, Abhay
    Selnes, Ola A.
    Albert, Marilyn
    O'Brien, Richard
    NEUROBIOLOGY OF AGING, 2013, 34 (12) : 2827 - 2834
  • [43] Cerebrospinal fluid lipidomics for biomarkers of Alzheimer's disease†
    Byeon, Seul Kee
    Madugundu, Anil K.
    Jain, Ankit P.
    Bhat, Firdous A.
    Jung, Jae Hun
    Renuse, Santosh
    Darrow, Jacqueline
    Bakker, Arnold
    Albert, Marilyn
    Moghekar, Abhay
    Pandey, Akhilesh
    MOLECULAR OMICS, 2021, 17 (03) : 454 - 463
  • [44] Association of cerebrospinal fluid Neurogranin with Alzheimer’s disease
    Lijun Wang
    Aging Clinical and Experimental Research, 2019, 31 : 185 - 191
  • [45] Cerebrospinal fluid microRNA profile in Alzheimer's disease
    Denk, J.
    Arlt, S.
    Boelmans, K.
    Jahn, H.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2014, 24 : S636 - S636
  • [46] Cerebrospinal fluid proteomic biomarkers for Alzheimer's disease
    Finehout, Erin J.
    Franck, Zsofia
    Choe, Leila H.
    Relkin, Norman
    Lee, Kelvin H.
    ANNALS OF NEUROLOGY, 2007, 61 (02) : 120 - 129
  • [47] Proteomic analysis of cerebrospinal fluid in Alzheimer's disease
    Watanabe, A
    Arai, H
    Asada, T
    Washimi, Y
    Endo, H
    Tabira, T
    NEUROBIOLOGY OF AGING, 2004, 25 : S359 - S359
  • [48] Cerebrospinal fluid markers for prediction of Alzheimer's disease
    Zetterberg, H
    Wahlund, LO
    Blennow, K
    NEUROSCIENCE LETTERS, 2003, 352 (01) : 67 - 69
  • [49] Metabolite Profiling of Alzheimer's Disease Cerebrospinal Fluid
    Czech, Christian
    Berndt, Peter
    Busch, Kristina
    Schmitz, Oliver
    Wiemer, Jan
    Most, Veronique
    Hampel, Harald
    Kastler, Juergen
    Senn, Hans
    PLOS ONE, 2012, 7 (02):
  • [50] Trace elements in the cerebrospinal fluid in Alzheimer's disease
    Rao, KSJ
    Shanmugavelu, P
    Shankar, SK
    Devi, RPR
    Rao, RV
    Pande, S
    Menon, RB
    ALZHEIMERS REPORTS, 1999, 2 (06): : 333 - 338