Super-Resolution of Single Remote Sensing Image Based on Residual Dense Backprojection Networks

被引:93
|
作者
Pan, Zongxu [1 ,2 ]
Ma, Wen [1 ,2 ,3 ]
Gu, Jiayi [1 ,2 ,3 ]
Lei, Bin [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Elect, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Key Lab Technol Geospatial Informat Proc & Applic, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 101408, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2019年 / 57卷 / 10期
基金
中国国家自然科学基金;
关键词
Convolutional neural networks (CNNs); dense backprojection blocks; remote sensing images; residual learning; single image super-resolution (SISR); SUPER RESOLUTION; REPRESENTATION;
D O I
10.1109/TGRS.2019.2917427
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
High-resolution (HR) images are always preferred for many remote sensing applications, which can be obtained from their low-resolution (LR) counterparts via a technique referred to as super-resolution (SR). Among SR approaches, single image SR (SISR) methods aim at reconstructing the HR image from only one LR image. In this paper, a residual dense backprojection network (RDBPN)-based SISR method is proposed to promote the resolution of RGB remote sensing images with median- and large-scale factors. The proposed network consists of several residual dense backprojection blocks that contain two kinds of modules, named the upprojection module and the downprojection module, and these modules are densely connected in one block. Different from the chain-connected backprojection structure, the proposed method applies a residual backprojection block structure, which can utilize residual learning in both global and local manners. We further simplify the network by replacing the downprojection unit with the downscaling unit to accelerate the speed of reconstruction, and this implementation is called fast RDBPN (FRDBPN). Several experiments under the UC Merced data set are conducted to validate the effectiveness of the proposed method, and the results indicate that: 1) the proposed residual block structure is superior to the chain-connected structure; 2) FRDBPN achieves a speedup of about 1.3 times with similar and even better-reconstructed performance in comparison with RDBPN; and 3) RDBPN and FRDBPN outperform several state-of-the-art methods in terms of both quantitative evaluation and visual quality.
引用
收藏
页码:7918 / 7933
页数:16
相关论文
共 50 条
  • [41] Fast Single Image Super-Resolution via Dilated Residual Networks
    Zhang Lu
    Zhang Yu
    Peng Yali
    Liu Shigang
    Wu Xiaojun
    Lu Gang
    Rao Yuan
    IEEE ACCESS, 2019, 7 : 109729 - 109738
  • [42] Generative Adversarial Network with Residual Dense Generator for Remote Sensing Image Super Resolution
    Sustika, Rika
    Suksmono, Andriyan Bayu
    Danudirdjo, Donny
    Wikantika, Ketut
    2020 INTERNATIONAL CONFERENCE ON RADAR, ANTENNA, MICROWAVE, ELECTRONICS, AND TELECOMMUNICATIONS (ICRAMET): FOSTERING INNOVATION THROUGH ICTS FOR SUSTAINABLE SMART SOCIETY, 2020, : 34 - 39
  • [43] RFCNet: Remote Sensing Image Super-Resolution Using Residual Feature Calibration Network
    Xue, Yuan
    Li, Liangliang
    Wang, Zheyuan
    Jiang, Chenchen
    Liu, Minqin
    Wang, Jiawen
    Sun, Kaipeng
    Ma, Hongbing
    TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (03): : 475 - 485
  • [44] Remote sensing image super-resolution based on improved sparse representation
    Zhu F.-Z.
    Liu Y.
    Huang X.
    Bai H.-Y.
    Wu H.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2019, 27 (03): : 718 - 725
  • [45] RRSGAN: Reference-Based Super-Resolution for Remote Sensing Image
    Dong, Runmin
    Zhang, Lixian
    Fu, Haohuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [46] Deep Learning for Remote Sensing Image Super-Resolution
    Ul Hoque, Md Reshad
    Burks, Roland, III
    Kwan, Chiman
    Li, Jiang
    2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 286 - 292
  • [47] TRANSCYCLEGAN: AN APPROACH FOR REMOTE SENSING IMAGE SUPER-RESOLUTION
    Zhai, Lujun
    Wang, Yonghui
    Cui, Suxia
    Zhou, Yu
    2024 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, SSIAI, 2024, : 61 - 64
  • [48] Remote Sensing Image Super-resolution: Challenges and Approaches
    Yang, Daiqin
    Li, Zimeng
    Xia, Yatong
    Chen, Zhenzhong
    2015 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2015, : 196 - 200
  • [49] TRANSFORMATION CONSISTENCY FOR REMOTE SENSING IMAGE SUPER-RESOLUTION
    Deng, Kai
    Yao, Ping
    Cheng, Siyuan
    Bi, Junyu
    Zhang, Kun
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 201 - 205
  • [50] MAP super-resolution reconstruction of remote sensing image
    Liu Tao
    Qian Feng
    Zhang Bao
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2018, 33 (10) : 884 - 892