On invariance factors and invariance vectors for difference equations

被引:2
|
作者
Van Horssen, WT [1 ]
机构
[1] Delft Univ Technol, Dept Appl Math Anal, NL-2628 CD Delft, Netherlands
关键词
invariance factor; invariance vector; exact difference equation; invariant; first integral; functional equation;
D O I
10.1080/1023619021000053999
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the concept of invariance factors and invariance vectors to obtain invariants (or first integrals) for difference equations will be presented. It will be shown that all invariance factors and invariance vectors have to satisfy a functional equation. This concept turns out to be analogous to the concept of integrating factors and integrating vectors for ordinary differential equations.
引用
收藏
页码:1133 / 1146
页数:14
相关论文
共 50 条
  • [41] A conformal invariance for generalized Birkhoff equations
    Fengxiang Mei Jiafang Xie Tieqiang Gang Faculty of Science
    Acta Mechanica Sinica, 2008, 24 (05) : 583 - 585
  • [42] Projective Invariance and Einstein's Equations
    Giovanni Giachetta
    Luigi Mangiarotti
    General Relativity and Gravitation, 1997, 29 : 5 - 18
  • [43] Infinitesimal Invariance for the Coupled KPZ Equations
    Funaki, Tadahisa
    IN MEMORIAM MARC YOR - SEMINAIRE DE PROBABILITES XLVII, 2015, 2137 : 37 - 47
  • [44] Differential equations, duality and of modular invariance
    Huang, YZ
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2005, 7 (05) : 649 - 706
  • [45] LOCAL DUALITY INVARIANCE OF MAXWELL EQUATIONS
    MALIK, RP
    PRADHAN, T
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1985, 28 (04): : 525 - 527
  • [46] Stochastic growth equations and reparametrization invariance
    Marsili, M
    Maritan, A
    Toigo, F
    Banavar, JR
    REVIEWS OF MODERN PHYSICS, 1996, 68 (04) : 963 - 983
  • [47] ON ADDITIONAL INVARIANCE OF DIRAC AND MAXWELL EQUATIONS
    FUSHCHICH, VI
    LETTERE AL NUOVO CIMENTO, 1974, 11 (10): : 508 - 512
  • [48] Supersymmetry, shape invariance and the Legendre equations
    Bazeia, D.
    Das, Ashok
    PHYSICS LETTERS B, 2012, 715 (1-3) : 256 - 259
  • [49] A conformal invariance for generalized Birkhoff equations
    Fengxiang Mei
    Jiafang Xie
    Tieqiang Gang
    Acta Mechanica Sinica, 2008, 24 : 583 - 585
  • [50] A conformal invariance for generalized Birkhoff equations
    Mei, Fengxiang
    Xie, Jiafang
    Gang, Tieqiang
    ACTA MECHANICA SINICA, 2008, 24 (05) : 583 - 585