On invariance factors and invariance vectors for difference equations

被引:2
|
作者
Van Horssen, WT [1 ]
机构
[1] Delft Univ Technol, Dept Appl Math Anal, NL-2628 CD Delft, Netherlands
关键词
invariance factor; invariance vector; exact difference equation; invariant; first integral; functional equation;
D O I
10.1080/1023619021000053999
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the concept of invariance factors and invariance vectors to obtain invariants (or first integrals) for difference equations will be presented. It will be shown that all invariance factors and invariance vectors have to satisfy a functional equation. This concept turns out to be analogous to the concept of integrating factors and integrating vectors for ordinary differential equations.
引用
收藏
页码:1133 / 1146
页数:14
相关论文
共 50 条
  • [1] On Positive Invariance for Delay Difference Equations
    Lombardi, Warody
    Olaru, Sorin
    Lazar, Mircea
    Niculescu, Silviu-Iulian
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3674 - 3679
  • [2] Invariance principles on delay difference equations
    Zhang, SI
    ADVANCES IN DIFFERENCE EQUATIONS-BOOK, 1997, : 657 - 662
  • [3] Invariance Analysis and Dynamics of Difference Equations
    Mkhwanazi, Kgatliso
    Folly-Gbetoula, Mensah
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2025, 14 (02) : 483 - 498
  • [4] The role of invariance in the theory of nonautonomous difference equations
    Aulbach, B
    NEW DEVELOPMENTS IN DIFFERENCE EQUATIONS AND APPLICATIONS, 1999, : 25 - 39
  • [5] Guide on set invariance for delay difference equations
    Laraba, Mohammed-Tahar
    Olaru, Sorin
    Niculescu, Silviu-Iulian
    Blanchini, Franco
    Giordano, Giulia
    Casagrande, Daniele
    Miani, Stefano
    ANNUAL REVIEWS IN CONTROL, 2016, 41 : 13 - 23
  • [6] KILLING VECTORS AND INVARIANCE TRANSFORMATIONS OF EINSTEIN-MAXWELL EQUATIONS
    WOOLLEY, ML
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 80 (SEP) : 357 - 364
  • [7] AN INVARIANCE-PRINCIPLE FOR SOLUTIONS TO STOCHASTIC DIFFERENCE-EQUATIONS
    GUESS, HA
    JOURNAL OF APPLIED PROBABILITY, 1981, 18 (02) : 548 - 553
  • [9] INVARIANCE AND NON-INVARIANCE PROPERTIES OF PARKS EQUATIONS
    CALVAER, AJ
    BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1979, 65 (09): : 456 - 469
  • [10] ON EQUATIONS WITH UNIVERSAL INVARIANCE
    GRIGORE, DR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (02): : L49 - L57