Detection of Outlier Information Using Linguistic Summarization

被引:7
|
作者
Duraj, Agnieszka [1 ]
Szczepaniak, Piotr S. [1 ]
Ochelska-Mierzejewska, Joanna [1 ]
机构
[1] Lodz Univ Technol, Inst Informat Technol, Ul Wolczanska 215, PL-90924 Lodz, Poland
来源
关键词
Detection of outlier information; Textual records comparison; Summarization of textual data bases; Fuzzy similarity; Information granularity;
D O I
10.1007/978-3-319-26154-6_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The main goal of automatic summarization of databases is usually to characterize the collection of data in terms of the dominant information involved. In complement to this task, the present paper shows the use of linguistic summarization for the characterization of databases containing textual records through detection of outlier information involved. The method applies a fuzzy measure of similarity between sentences to the summarization result. Certain level of standadization of textual records is assumed.
引用
收藏
页码:101 / 113
页数:13
相关论文
共 50 条
  • [31] Local outlier detection based on information entropy weighting
    Wang, Lina
    Feng, Chao
    Ren, Yongjun
    Xia, Jinyue
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2019, 30 (04) : 207 - 217
  • [32] Outlier detection using random walks
    Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824
    IEEE Comput. Soc., Biological and Artificial Intelligence Society, 1600, 532-539 (2006):
  • [33] Outlier Detection Using Dynamic Plots
    Ahn, Byung Jin
    Seo, Han Son
    KOREAN JOURNAL OF APPLIED STATISTICS, 2011, 24 (05) : 979 - 986
  • [34] Outlier Detection Using Voronoi Diagram
    Qu, Jilin
    PROCEEDINGS OF THE 2008 INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN, VOL 1, 2008, : 495 - 498
  • [35] Outlier Detection using Modified Boxplot
    Jajo, Nethal K.
    Matawie, Kenan M.
    INTERNATIONAL JOURNAL OF ECOLOGY & DEVELOPMENT, 2009, 13 (02) : 116 - 122
  • [36] Outlier Detection using Evolutionary Computing
    Krishna, Gutha Jaya
    Ravi, Vadlamani
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATICS AND ANALYTICS (ICIA' 16), 2016,
  • [37] Damage detection using outlier analysis
    Worden, K
    Manson, G
    Fieller, NRJ
    JOURNAL OF SOUND AND VIBRATION, 2000, 229 (03) : 647 - 667
  • [38] Outlier detection using random walks
    Moonesinghe, H. D. K.
    Tan, Pang-Ning
    ICTAI-2006: EIGHTEENTH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, : 532 - +
  • [39] Using data images for outlier detection
    Marchette, DJ
    Solka, JL
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 43 (04) : 541 - 552
  • [40] Outlier detection using default reasoning
    Angiulli, Fabrizio
    Ben-Eliyahu-Zohary, Rachel
    Palopoli, Luigi
    ARTIFICIAL INTELLIGENCE, 2008, 172 (16-17) : 1837 - 1872