Domain decomposition of optimal control problems for dynamic networks of elastic strings

被引:17
|
作者
Leugering, G [1 ]
机构
[1] Univ Bayreuth, Inst Math, D-95440 Bayreuth, Germany
关键词
dynamic networks of elastic strings; dynamic domain decomposition; optimal control;
D O I
10.1023/A:1008721402512
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider optimal control problems related to exact- and approximate controllability of dynamic networks of elastic strings. In this note we concentrate on problems with linear dynamics, no state and no control constraints. The emphasis is on approximating target states and velocities in part of the network using a dynamic domain decomposition method (d(3)m) for the optimality system on the network. The decomposition is established via a Uzawa-type saddle-point iteration associated with an augmented Lagrangian relaxation of the transmission conditions at multiple joints. We consider various cost functions and prove convergence of the infinite dimensional scheme for an exemplaric choice of the cost. We also give numerical evidence in the case of simple exemplaric networks.
引用
收藏
页码:5 / 27
页数:23
相关论文
共 50 条
  • [31] DECOMPOSITION IN PROBLEMS OF THE OPTIMAL-CONTROL WITH AGGREGATION
    FEDKO, OS
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1983, (12): : 51 - 54
  • [32] Dynamic domain decomposition and grid modification for parabolic problems
    Yang, D.
    Computers and Mathematics with Applications, 1997, 33 (10): : 89 - 103
  • [33] DECOMPOSITION OF LARGE OPTIMAL-CONTROL PROBLEMS
    PEARSON, JD
    REICH, S
    PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1967, 114 (06): : 845 - +
  • [34] Dynamic domain decomposition and grid modification for parabolic problems
    Yang, D
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 33 (10) : 89 - 103
  • [35] Decompose-then-optimize: a new approach to design domain decomposition methods for optimal control problems
    Cocquet, Pierre-Henri
    Gander, Martin J.
    Vieira, Alexandre
    NUMERICAL ALGORITHMS, 2025,
  • [36] Domain decomposition methods for advection dominated linear-quadratic elliptic optimal control problems
    Bartlett, Roscoe A.
    Heinkenschloss, Matthias
    Ridzal, Denis
    Waanders, Bart G. van Bloemen
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (44-47) : 6428 - 6447
  • [37] Control and inverse problems for networks of vibrating strings with attached masses
    Al-Musallam, F.
    Avdonin, S.
    Avdonina, N.
    Edward, J.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2016, 7 (05): : 835 - 841
  • [38] Topological derivatives for networks of elastic strings
    Leugering, G.
    Sokolowski, J.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2011, 91 (12): : 926 - 943
  • [39] Interface control domain decomposition methods for heterogeneous problems
    Discacciati, Marco
    Gervasio, Paola
    Quarteroni, Alfio
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 76 (08) : 471 - 496
  • [40] Neumann-Neumann domain decomposition preconditioners for linear-quadratic elliptic optimal control problems
    Heinkenschloss, Matthias
    Nguyen, Hoang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03): : 1001 - 1028