Surface-confinement assisted synthesis of nitrogen-rich single atom Fe-N/C electrocatalyst with dual nitrogen sources for enhanced oxygen reduction reaction

被引:9
|
作者
Cui, Yaqi [1 ,2 ]
Xu, Jiaoxing [1 ,2 ]
Zhao, Yi [1 ,2 ]
Guan, Lunhui [1 ,2 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fujian Prov key Lab Nanomat, CAS Key Lab Design & Assembly Funct Nanostruct, Fuzhou 350108, Fujian, Peoples R China
[2] Fujian Normal Univ, Coll Chem & Mat Sci, Fuzhou 350007, Fujian, Peoples R China
关键词
single-atom Fe-N/C electrocatalyst; binary nitrogen sources; surface-confined pyrolysis; ORR; primary Zn-air battery;
D O I
10.1088/1361-6528/abf8db
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The utilization of earth abundant iron and nitrogen doped carbon as a precious-metal-free electrocatalyst for oxygen reduction reaction (ORR) significantly depends on the rational design and construction of desired Fe-N-x moieties on carbon substrates, which however remains an enormous challenge. Herein a typical nanoporous nitrogen-rich single atom Fe-N/C electrocatalyst on carbon nanotube (NR-CNT@FeN-PC) was successfully prepared by using CNT as carbon substrate, polyaniline (PANI) and dicyandiamine (DCD) as binary nitrogen sources and silica-confinement-assisted pyrolysis, which not only facilitate rich N-doping for the inhibition of the Fe agglomeration and the formation of single atom Fe-N-x sites in carbon matrix, but also generate more micropores for enlarging BET specific surface area (up to 1500 m(2).g(-1)). Benefiting from the advanced composition, nanoporous structure and surface hydrophilicity to guarantee the sufficient accessible active sites for ORR, the NR-CNT@FeN-PC catalyst under optimized conditions delivers prominent ORR performance with a half-wave potential (0.88 V versus RHE) surpass commercial Pt/C catalyst by 20 mV in alkaline electrolyte. When assembled in a home-made Zn-air battery device as cathodic catalyst, it achieved a maximum output power density of 246 mW.cm(-2) and a specific capacity of 719 mA.h.g(Zn)(-1) outperformed commercial Pt/C catalyst, holding encouraging promise for the application in metal-air batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Engineering single-atom Fe-N active sites on hollow carbon spheres for oxygen reduction reaction
    Ribeiro, Rui S.
    Vieira, Ana Luisa S.
    Biernacki, Krzysztof
    Magalhaes, Alexandre L.
    Delgado, Juan J.
    Morais, Rafael G.
    Rey-Raap, Natalia
    Rocha, Raquel P.
    Pereira, M. Fernando R.
    CARBON, 2023, 213
  • [22] Single-Atom Fe-N4 on a Carbon Substrate for Nitrogen Reduction Reaction
    Liu, Yiwen
    Zhao, Zhiqiang
    Wei, Wei
    Jin, Xiangyuan
    Wang, Guo
    Li, Kai
    Lin, Yuqing
    ACS APPLIED NANO MATERIALS, 2021, 4 (12) : 13001 - 13009
  • [23] The role of nitrogen sources and hydrogen adsorption on the dynamic stability of Fe-N-C catalysts in oxygen reduction reaction
    Huang, Zhou
    Li, Fuhua
    Liu, Yongduo
    Chen, Siguo
    Wei, Zidong
    Tang, Qing
    CHEMICAL SCIENCE, 2024, 15 (03) : 1132 - 1142
  • [24] Nitrogen-rich Fe-N-C materials derived from polyacrylonitrile as highly active and durable catalysts for the oxygen reduction reaction in both acidic and alkaline electrolytes
    Chen, J. L.
    Li, W. B.
    Xu, B. Q.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 502 : 44 - 51
  • [25] Fe/N Codoped Carbon Nanocages with Single-Atom Feature as Efficient Oxygen Reduction Reaction Electrocatalyst
    Jia, Nan
    Xu, Qiaozhen
    Zhao, Fengqi
    Gao, Hong-Xu
    Song, Jiaxin
    Chen, Pei
    An, Zhongwei
    Chen, Xinbing
    Chen, Yu
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (09): : 4982 - 4990
  • [26] Paragenesis of Palladium-Cobalt Nanoparticle in Nitrogen-Rich Carbon Nanotubes as a Bifunctional Electrocatalyst for Hydrogen-Evolution Reaction and Oxygen-Reduction Reaction
    Huang, Binbin
    Chen, Liyu
    Wang, Yan
    Ouyang, Liuzhang
    Ye, Jianshan
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (32) : 7710 - 7718
  • [27] Secondary-Atom-Doping Enables Robust Fe–N–C Single-Atom Catalysts with Enhanced Oxygen Reduction Reaction
    Xin Luo
    Xiaoqian Wei
    Hengjia Wang
    Wenling Gu
    Takuma Kaneko
    Yusuke Yoshida
    Xiao Zhao
    Chengzhou Zhu
    Nano-Micro Letters, 2020, 12
  • [28] Surface-nitrogen-rich ordered mesoporous carbon as an efficient metal-free electrocatalyst for oxygen reduction reaction
    Xiao, Chunhui
    Chen, Xu
    Fan, Zhaoyang
    Liang, Jin
    Zhang, Bo
    Ding, Shujiang
    NANOTECHNOLOGY, 2016, 27 (44)
  • [29] Nitrogen-rich coordination polymer-derived Ni3C@CN catalysts for oxygen reduction reaction
    Huang, Xiaona
    Tang, Jialin
    Liu, Jian
    Zhou, Zheng
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2023, 176
  • [30] Nitrogen-Rich Precursors Assisted Synthesis of Metal-Organic Framework-Derived Nanostructures as Bifunctional Catalysts for Electrochemical Sensing and Oxygen Reduction Reaction
    Zhang, Wen
    Chen, Haodong
    Li, Xingxing
    Qin, Haiying
    Chi, Hongzhong
    Yang, Dongjing
    Fu, Degang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (02)