Finite speed of propagation for the Cahn-Hilliard equation with degenerate mobility

被引:1
|
作者
Chen, Bosheng [1 ]
Liu, Changchun [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun, Jilin, Peoples R China
关键词
Ming Mei; Cahn-Hilliard equation; degenerate mobility; finite speed of propagation; WEAK SOLUTIONS; THIN; SUPPORT; TIME;
D O I
10.1080/00036811.2019.1659957
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the Cahn-Hilliard equation with degenerate mobility. We obtain that the Cahn-Hilliard equation has the finite speed of propagation for the nonnegative strong solutions when 0<n<2.
引用
收藏
页码:1693 / 1726
页数:34
相关论文
共 50 条
  • [21] From Vlasov Equation to Degenerate Nonlocal Cahn-Hilliard Equation
    Charles Elbar
    Marco Mason
    Benoît Perthame
    Jakub Skrzeczkowski
    Communications in Mathematical Physics, 2023, 401 : 1033 - 1057
  • [23] From Vlasov Equation to Degenerate Nonlocal Cahn-Hilliard Equation
    Elbar, Charles
    Mason, Marco
    Perthame, Benoit
    Skrzeczkowski, Jakub
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 401 (01) : 1033 - 1057
  • [24] UPPER BOUNDS FOR COARSENING FOR THE DEGENERATE CAHN-HILLIARD EQUATION
    Novick-Cohen, Amy
    Shishkov, Andrey
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (01) : 251 - 272
  • [25] THE CAUCHY PROBLEM FOR THE DEGENERATE CONVECTIVE CAHN-HILLIARD EQUATION
    Liu, Aibo
    Liu, Changchun
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (08) : 2595 - 2623
  • [26] Degenerate Cahn-Hilliard equation: From nonlocal to local
    Elbar, Charles
    Skrzeczkowski, Jakub
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 364 : 576 - 611
  • [27] Nonlocal Cahn-Hilliard Equation with Degenerate Mobility: Incompressible Limit and Convergence to Stationary States
    Elbar, Charles
    Perthame, Benoit
    Poiatti, Andrea
    Skrzeczkowski, Jakub
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (03)
  • [28] Relaxation of the Cahn-Hilliard equation with singular single-well potential and degenerate mobility
    Perthame, Benoit
    Poulain, Alexandre
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2021, 32 (01) : 89 - 112
  • [29] A numerical method for the ternary Cahn-Hilliard system with a degenerate mobility
    Kim, Junseok
    Kang, Kyungkeun
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (05) : 1029 - 1042
  • [30] ON THE CAHN-HILLIARD EQUATION
    ELLIOTT, CM
    ZHENG, SM
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 96 (04) : 339 - 357