Implementation of meso-scale radioactive dispersion model for GPU

被引:1
|
作者
Sunarko [1 ]
Suud, Z. [2 ]
机构
[1] Natl Nucl Energy Agcy Indonesia BATAN, Nucl Energy Assessment Ctr, Jl Kuningan Barat, Jakarta 10270, Indonesia
[2] Bandung Inst Technol ITB, Phys Dept, Jl Ganesha 10, Bandung, Indonesia
关键词
D O I
10.3139/124.110646
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Lagrangian Particle Dispersion Method (LPDM) is applied to model atmospheric dispersion of radioactive material in a meso-scale of a few tens of kilometers for site study purpose. Empirical relationships are used to determine the dispersion coefficient for various atmospheric stabilities. Diagnostic 3-D wind-field is solved based on data from one meteorological station using mass-conservation principle. Particles representing radioactive pollutant are dispersed in the wind-field as a point source. Time-integrated air concentration is calculated using kernel density estimator (KDE) in the lowest layer of the atmosphere. Parallel code is developed for GTX-660Ti GPU with a total of 1 344 scalar processors using CUDA. A test of 1-hour release discovers that linear speedup is achieved starting at 28 800 particles-per-hour (pph) up to about 20 x at 14 4000 pph. Another test simulating 6-hour release with 36 000 pph resulted in a speedup of about 60 x. Statistical analysis reveals that resulting grid doses are nearly identical in both CPU and GPU versions of the code.
引用
收藏
页码:225 / 231
页数:7
相关论文
共 50 条
  • [31] Influence of underlying surface forest fraction to the meso-scale wind fields and dispersion conditions
    Kaasik, M
    AIR POLLUTION MODELLING AND SIMULATION, PROCEEDINGS, 2002, : 355 - 360
  • [32] Imaging meso-scale ionospheric structures
    Burston, Robert
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2012, 117
  • [33] MESO-SCALE OIL CONDITION SENSOR
    McClelland, Bradley D.
    Rorrer, Ronald A. L.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 9, 2012, : 351 - 358
  • [34] A meso-scale cartography of the AI ecosystem
    Gargiulo, Floriana
    Fontaine, Sylvain
    Dubois, Michel
    Tubaro, Paola
    QUANTITATIVE SCIENCE STUDIES, 2023, 4 (03): : 574 - 593
  • [35] Machine learnt meso-scale models
    Singh, Samrendra
    Bejagam, Karteek
    Deshmukh, Sanket
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [36] MAGNETIC ACTUATION OF MESO-SCALE MECHANISMS
    Moore, P. M.
    Modica, F.
    Wiens, G. J.
    Fassi, I.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2013, VOL 1, 2014,
  • [37] Phase separation of 2D meso-scale Coulombic crystals from meso-scale polarizable "solvent"
    Kaufman, George K.
    Thomas, Samuel W., III
    Reches, Meital
    Shaw, Bryan F.
    Feng, Ji
    Whitesides, George M.
    SOFT MATTER, 2009, 5 (06) : 1188 - 1191
  • [38] Interactive Meso-scale Simulation of Skyscapes
    Vimont, Ulysse
    Gain, James
    Lastic, Maud
    Cordonnier, Guillaume
    Abiodun, Babatunde
    Cani, Marie-Paule
    COMPUTER GRAPHICS FORUM, 2020, 39 (02) : 585 - 596
  • [39] Combustion in meso-scale vortex chambers
    Wu, Ming-hsun
    Wang, Yanxing
    Yang, Vigor
    Yetter, Richard A.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2007, 31 : 3235 - 3242
  • [40] Robotic microassembly for meso-scale application
    Ye, Xin
    Gao, Jun
    Zhang, Zhijing
    Shao, Chao
    Liu, Pan
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2015, 42 (02): : 142 - 148