Low-Temperature Solution Synthesis of Chemically Functional Ferromagnetic FePtAu Nanoparticles

被引:21
|
作者
Kinge, Sachin [1 ,2 ]
Gang, Tian [1 ]
Naber, Wouter J. M. [1 ]
Boschker, Hans [3 ]
Rijnders, Guus [3 ]
Reinhoudt, David N. [2 ]
van der Wiel, Wilfred G. [1 ]
机构
[1] Univ Twente, MESA Inst Nanotechnol, Strateg Res Orientat NanoElect, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, MESA Inst Nanotechnol, Fac Sci & Technol, Lab Supramol Chem & Technol, NL-7500 AE Enschede, Netherlands
[3] Univ Twente, MESA Inst Nanotechnol, Fac Sci & Technol, Inorgan Mat Sci Grp, NL-7500 AE Enschede, Netherlands
关键词
MAGNETIC-PROPERTIES; FABRICATION; COERCIVITY; PARTICLES; ARRAYS;
D O I
10.1021/nl901465s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Magnetic nanoparticles are of great scientific and technological interest. The application of ferromagnetic nanoparticles for high-density data storage has great potential, but energy efficient synthesis of uniform, isolated, and patternable nanoparticles that remain ferromagnetic at room temperature is not trivial. Here, we present a low-temperature solution synthesis method for FePtAu nanoparticles that addresses all those issues and therefore can be regarded as an important step toward applications. We show that the onset of the chemically ordered face-centered tetragonal (L1(0)) phase is obtained for thermal annealing temperatures as low as 150 degrees C. Large uniaxial magnetic anisotropy (10(7) erg/cm(3)) and a high long-range order parameter have been obtained. Our low-temperature solution annealing leaves the organic ligands intact, so that the possibility for postanneal monolayer formation and chemically assisted patterning on a surface is maintained.
引用
收藏
页码:3220 / 3224
页数:5
相关论文
共 50 条
  • [31] Low-temperature solution-based synthesis of oxide materials
    Henkes, Amanda E.
    Bauer, J. Christopher
    Schaak, Raymond E.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [32] Low-temperature properties of ferromagnetic Fibonacci superlattices
    Pantic, M.
    Pavkov-Hrvojevic, M.
    Rutonjski, M.
    Skrinjar, M.
    Kapor, D.
    Radosevic, S.
    Budincevic, M.
    EUROPEAN PHYSICAL JOURNAL B, 2007, 59 (03): : 367 - 373
  • [33] THEORY OF THE LOW-TEMPERATURE PROPERTIES OF FERROMAGNETIC CRYSTALS
    VANKRANENDONK, J
    PHYSICA, 1955, 21 (01): : 81 - 82
  • [34] Low-temperature properties of ferromagnetic Fibonacci superlattices
    M. Pantić
    M. Pavkov-Hrvojević
    M. Rutonjski
    M. Škrinjar
    D. Kapor
    S. Radošević
    M. Budinčević
    The European Physical Journal B, 2007, 59 : 367 - 373
  • [35] Low-temperature synthesis of ultra-high-temperature HfC and HfCN nanoparticles
    Yudin, S. N.
    Kasimtsev, A., V
    Volodko, S. S.
    Alimov, I. A.
    Markova, G., V
    Sviridova, T. A.
    Tabachkova, N. Yu
    Buinevich, V. S.
    Nepapushev, A. A.
    Moskovskikh, D. O.
    MATERIALIA, 2022, 22
  • [36] Low-temperature synthesis of white-light-emitting CsVO3 nanoparticles by an aqueous solution route
    Matsuura, Takahiro
    Miyazaki, Hidetoshi
    Ota, Toshitaka
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2017, 125 (08) : 657 - 659
  • [37] Low-temperature direct synthesis of CeO2-ZrO2 solid solution nanoparticles by a hydrothermal method
    Ahniyaz, A
    Fujiwara, T
    Fujino, T
    Yoshimura, M
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2004, 4 (03) : 233 - 238
  • [38] Structural and room temperature ferromagnetic properties of Ni doped ZnO nanoparticles via low-temperature hydrothermal method
    Xu, Kun
    Liu, Changzhen
    Chen, Rui
    Fang, Xiaoxiang
    Wu, Xiuling
    Liu, Jie
    PHYSICA B-CONDENSED MATTER, 2016, 502 : 155 - 159
  • [39] Low-temperature ferromagnetic properties in Co-doped Ag2Se nanoparticles
    Yang, Fengxia
    Yu, Gen
    Xia, Zhengcai
    Han, Chong
    Liu, Tingting
    Zhang, Duanming
    APPLIED PHYSICS LETTERS, 2014, 104 (01)
  • [40] Low-temperature solution route to macroscopic amounts of hydrogen terminated silicon nanoparticles
    Neiner, Doinita
    Chiu, Hsiang Wei
    Kauzlarich, Susan M.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (34) : 11016 - 11017